Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor. Recent findings highlighted the significance of viral microRNAs (miRs) in regulating post-transcriptional mRNA expression in various human conditions. Although HSV1 encodes viral miRs and affects the central nervous system, no study investigated the roles of HSV1-encoding miRs in GBM development. This study applied in silico approaches to investigate whether HSV1-encoding miRs are involved in GBM development and, if so, how they regulate tumor-suppressive/oncogenes expression in GBM. This study leveraged bioinformatics approaches to identify the potential effect of HSV1 miRs in GBM development. The GSE158284, GSE153679, and GSE182109 datasets were analyzed to identify differentially expressed genes in GBM tissues and cell lines using the limma package in the R software. The GSE182109 dataset was analyzed to determine gene expression at the single-cell levels using the Seurat package in the R software. The TCGA-GTEX, GDSC, CTRP, immunogenetic, and enrichment analyses were performed to study the impact of identified viral HSV1 miRs targets in GBM development. hsv1-miR-H6-3p is upregulated in GBM and can be responsible for EPB41L1 and SH3PXD2A downregulation in GBM tissues. Also, hsv1-miR-H1-5p is upregulated in GBM and can decrease the expression of MELK, FZD2, NOVA1, TMEM97, PTPRZ1, and PDGFC in GBM development. The single-cell RNA sequencing analyses have demonstrated that MELK, FZD2, NOVA1, TMEM97, PTPRZ1, and PDGFC are expressed in astrocytes residing in the GBM microenvironment. This study provides novel insights into the potential roles of HSV1 miRs in GBM pathogenesis and offers a reference for further studies on the significance of HSV1 miRs in GBM development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761845 | PMC |
http://dx.doi.org/10.1038/s41598-023-45249-2 | DOI Listing |
Sci Adv
January 2025
Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
Intracranial optical imaging of glioblastoma (GBM) is challenging due to the scarcity of effective probes with blood-brain barrier (BBB) permeability and sufficient imaging depth. Herein, we describe a rational strategy for designing optical probes crossing the BBB based on an electron donor-π-acceptor system to adjust the lipid/water partition coefficient and molecular weight of probes. The amphiphilic hemicyanine dye (namely, IVTPO), which exhibits remarkable optical properties and effective BBB permeability, is chosen as an efficient fluorescence/photoacoustic probe for in vivo real-time imaging of orthotopic GBM with high resolution through the intact skull.
View Article and Find Full Text PDFJ Mol Neurosci
January 2025
Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
Hemorrhagic stroke is a known complication of glioma, yet the underlying mechanisms remain poorly understood. This study aims to investigate key biomarkers of glioma-related hemorrhage to provide insights into glioma molecular therapies. Data were obtained from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases to analyze differentially expressed genes (DEGs) in glioma by contrasting glioblastoma (GBM) with low-grade gliomas (LGGs).
View Article and Find Full Text PDFCurr Med Imaging
January 2025
Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
Purpose: This study aimed to assess the hemodynamic changes in the vena cava and predict the likelihood of Cardiac Remodeling (CR) and Myocardial Fibrosis (MF) in athletes utilizing four-dimensional (4D) parameters.
Materials And Methods: A total of 108 athletes and 29 healthy sedentary controls were prospectively recruited and underwent Cardiac Magnetic Resonance (CMR) scanning. The 4D flow parameters, including both general and advanced parameters of four planes for the Superior Vena Cava (SVC) and Inferior Vena Cava (IVC) (sheets 1-4), were measured and compared between the different groups.
Cell Death Dis
January 2025
Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA.
The association of necrosis in tumors with poor prognosis implies a potential tumor-promoting role. However, the mechanisms underlying cell death in this context and how damaged tissue contributes to tumor progression remain unclear. Here, we identified p38 mitogen-activated protein kinases (p38 MAPK, a.
View Article and Find Full Text PDFActa Biomater
January 2025
Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, United States of America; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States of America. Electronic address:
Pro-tumoral M2 tumor-associated macrophages (TAMs) play a critical role in the tumor immune microenvironment (TIME), making them an important therapeutic target for cancer treatment. Approaches for imaging and monitoring M2 TAMs, as well as tracking their changes in response to tumor progression or treatment are highly sought-after but remain underdeveloped. Here, we report an M2-targeted magnetic resonance imaging (MRI) probe based on sub-5 nm ultrafine iron oxide nanoparticles (uIONP), featuring an anti-biofouling coating to prevent non-specific macrophage uptake and an M2-specific peptide ligand (M2pep) for active targeting of M2 TAMs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!