Background: The variability in responses to neoadjuvant treatment with anti-HER2 antibodies prompts to personalized clinical management and the development of innovative treatment strategies. Tumor-infiltrating Natural Killer (TI-NK) cells can predict the efficacy of HER2-targeted antibodies independently from clinicopathological factors in primary HER2-positive breast cancer patients. Understanding the mechanism/s underlying this association would contribute to optimizing patient stratification and provide the rationale for combinatorial approaches with immunotherapy.
Methods: We sought to uncover processes enriched in NK cell-infiltrated tumors as compared to NK cell-desert tumors by microarray analysis. Findings were validated in clinical trial-derived transcriptomic data. In vitro and in vivo preclinical models were used for mechanistic studies. Findings were analysed in clinical samples (tumor and serum) from breast cancer patients.
Results: NK cell-infiltrated tumors were enriched in CCL5/IFNG-CXCL9/10 transcripts. In multivariate logistic regression analysis, IFNG levels underlie the association between TI-NK cells and pathological complete response to neoadjuvant treatment with trastuzumab. Mechanistically, the production of IFN-ɣ by CD16 NK cells triggered the secretion of CXCL9/10 from cancer cells. This effect was associated to tumor growth control and the conversion of CD16 into CD16CD103 NK cells in humanized in vivo models. In human breast tumors, the CD16 and CD103 markers identified lineage-related NK cell subpopulations capable of producing CCL5 and IFN-ɣ, which correlated with tissue-resident CD8 T cells. Finally, an early increase in serum CCL5/CXCL9 levels identified patients with NK cell-rich tumors showing good responses to anti-HER2 antibody-based neoadjuvant treatment.
Conclusions: This study identifies specialized NK cell subsets as the source of IFN-ɣ influencing the clinical efficacy of anti-HER2 antibodies. It also reveals the potential of serum CCL5/CXCL9 as biomarkers for identifying patients with NK cell-rich tumors and favorable responses to anti-HER2 antibody-based neoadjuvant treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10763072 | PMC |
http://dx.doi.org/10.1186/s13046-023-02918-4 | DOI Listing |
Introduction: Recent advances in the treatment of -mutant non-small cell lung cancer (NSCLC) have led to the development of KRAS inhibitors, such as sotorasib and adagrasib. However, resistance and disease progression remain significant challenges. In this study, we investigated the therapeutic potential of combining trastuzumab deruxtecan (T-DXd), an anti-HER2 antibody-drug conjugate, with sotorasib in -mutant NSCLC, while also evaluating HER2 expression in NSCLC samples.
View Article and Find Full Text PDFHum Vaccin Immunother
December 2025
Department of Research and Development, ManySmart Therapeutics, Taipei, Taiwan.
Monoclonal antibodies enhance innate immunity, while bispecific T cell engager antibodies redirect adaptive T cell immunity. To stimulate both innate and adaptive mechanisms, we created a bifunctional eCD16A/anti-CD3-BFP adapter protein for combined use with clinically approved monoclonal IgG1 antibodies. The adaptor protein contains the extracellular domain of the human CD16A high-affinity variant, which binds the Fc domain of IgG1 antibodies, and an anti-human CD3 single-chain variable fragment that redirects T cell cytotoxicity.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China.
Background: First-line treatment for advanced gastric adenocarcinoma (GAC) with human epidermal growth factor receptor 2 (HER2) is trastuzumab combined with chemotherapy. In clinical practice, HER2 positivity is identified through immunohistochemistry (IHC) or fluorescence in situ hybridization (FISH), whereas deep learning (DL) can predict HER2 status based on tumor histopathological features. However, it remains uncertain whether these deep learning-derived features can predict the efficacy of anti-HER2 therapy.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Obstetrics and Gynecology Department, Tehran University of Medical Sciences, Tehran, Iran.
Breast cancer is the most frequent non-dermatologic malignancy in women. Breast cancer is characterized by the expression of the human epidermal growth factor receptor type 2 (HER2), and the presence or lack of estrogen receptor (ER) and progesterone receptor (PR) expression. HER2 overexpression is reported in about 20 to 25% of breast cancer patients, which is usually linked to cancer progression, metastases, and poor survival.
View Article and Find Full Text PDFBMC Cancer
December 2024
Department of Cardiology, Peking University People's Hospital, Beijing, 100044, China.
Background: Anti-HER2 targeted therapy has significantly reduced the recurrence and death of HER2-overexpressing breast cancer patients, but might lead to cardiotoxicity. Some patients with normal myocardial function may suffer from subclinical myocardial dysfunction after anti-HER2 targeted therapy. We sought to evaluate earlier the subclinical myocardial dysfunction in breast cancer patients after single or dual anti-HER2 targeted therapy, and identify the risk factors related to subclinical myocardiotoxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!