A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Coloration differences in three Camellia reticulata Lindl. cultivars: 'Tongzimian', 'Shizitou' and 'Damanao'. | LitMetric

Coloration differences in three Camellia reticulata Lindl. cultivars: 'Tongzimian', 'Shizitou' and 'Damanao'.

BMC Plant Biol

Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Science, Southwest Forestry University, Kunming, Yunnan, 650224, China.

Published: January 2024

Camellia reticulata Lindl., also known as Yunnan Camellia, is an important ornamental plant in China, especially for its large and stunning flowers. A comprehensive understanding of their coloration mechanisms can aid breeders in developing new cultivars and improving their ornamental value; however, it is still unclear in Yunnan Camellia, especially in mixed-color flowers. In this study, we conducted metabolic and transcriptomic comparison analyses to investigate the coloration differences in three Yunnan Camellia cultivars: C. reticulata 'Shizitou' (SZT), C. reticulata 'Damanao' (MN), and C. reticulata 'Tongzimian' (TZM). Our results revealed that the initial flowering stage may play a critical role in the color change of MN. Metabolome analysis demonstrated that cyanidin was the primary anthocyanin in SZT and MN's red region, while its content was low in TZM and MN's white region. According to the transcriptome analysis, the anthocyanins biosynthesis pathway was reconstructed in Yunnan Camellia, and the low expression of CHS was detected in TZM and MN's white region, while ANR maintained a high expression level, which may lead to the low content of cyanidin in them. Transcription factors MYBs, bHLH, and bZIP may play a key role in regulating anthocyanin-structural genes. The co-expression analysis showed that the meristem tissue may play a crucial role in the formation of the mixed white-red color in MN. Our study enriched the genetic basis of flower coloration differences in Yunnan Camellia which will be a valuable genomic resource to understanding the biology of coloration formation and for breeding the Camellia cultivars.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10759361PMC
http://dx.doi.org/10.1186/s12870-023-04655-4DOI Listing

Publication Analysis

Top Keywords

yunnan camellia
20
coloration differences
12
differences three
8
camellia
8
camellia reticulata
8
reticulata lindl
8
camellia cultivars
8
tzm mn's
8
mn's white
8
white region
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!