Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Graph representational learning can detect topological patterns by leveraging both the network structure as well as nodal features. The basis of our exploration involves the application of graph neural network architectures and machine learning to resting-state functional Magnetic Resonance Imaging (rs-fMRI) data for the purpose of detecting schizophrenia. Our study uses single-site data to avoid the shortcomings in generalizability of neuroimaging data obtained from multiple sites.
Results: The performance of our graph neural network models is on par with that of our machine learning models, each of which is trained using 69 graph-theoretical measures computed from functional correlations between various regions of interest (ROI) in a brain graph. Our deep graph convolutional neural network (DGCNN) demonstrates a promising average accuracy score of 0.82 and a sensitivity score of 0.84.
Conclusions: This study provides insights into the role of advanced graph theoretical methods and machine learning on fMRI data to detect schizophrenia by harnessing changes in brain functional connectivity. The results of this study demonstrate the capabilities of using both traditional ML techniques as well as graph neural network-based methods to detect schizophrenia using features extracted from fMRI data. The study also proposes two methods to obtain potential biomarkers for the disease, many of which are corroborated by research in this area and can further help in the understanding of schizophrenia as a mental disorder.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10759601 | PMC |
http://dx.doi.org/10.1186/s12868-023-00841-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!