CD147 Sparks Atherosclerosis by Driving M1 Phenotype and Impairing Efferocytosis.

Circ Res

Department of Cell Biology, National Translational Science Center for Molecular Medicine (J.-J.L., H.W., C.Z., T.-J.Z., H.-L.W., Z.-K.L., Y.-H.M., Q.H., L.-J.W., Z.-N.C., H.B.), Fourth Military Medical University, Xi'an, China.

Published: January 2024

Background: Atherosclerosis is a globally prevalent chronic inflammatory disease with high morbidity and mortality. The development of atherosclerotic lesions is determined by macrophages. This study aimed to investigate the specific role of myeloid-derived CD147 (cluster of differentiation 147) in atherosclerosis and its translational significance.

Methods And Results: We generated mice with a myeloid-specific knockout of CD147 and mice with restricted CD147 overexpression, both in an apoE-deficient (ApoE) background. Here, the myeloid-specific deletion of CD147 ameliorated atherosclerosis and inflammation. Consistent with our in vivo data, macrophages isolated from myeloid-specific CD147 knockout mice exhibited a phenotype shift from proinflammatory to anti-inflammatory macrophage polarization in response to lipopolysaccharide/IFN (interferon)-γ. These macrophages demonstrated a weakened proinflammatory macrophage phenotype, characterized by reduced production of NO and reactive nitrogen species derived from iNOS (inducible NO synthase). Mechanistically, the TRAF6 (tumor necrosis factor receptor-associated factor 6)-IKK (inhibitor of κB kinase)-IRF5 (IFN regulatory factor 5) signaling pathway was essential for the effect of CD147 on proinflammatory responses. Consistent with the reduced size of the necrotic core, myeloid-specific CD147 deficiency diminished the susceptibility of iNOS-mediated late apoptosis, accompanied by enhanced efferocytotic capacity mediated by increased secretion of GAS6 (growth arrest-specific 6) in proinflammatory macrophages. These findings were consistent in a mouse model with myeloid-restricted overexpression of CD147. Furthermore, we developed a new atherosclerosis model in ApoE mice with humanized CD147 transgenic expression and demonstrated that the administration of an anti-human CD147 antibody effectively suppressed atherosclerosis by targeting inflammation and efferocytosis.

Conclusions: Myeloid CD147 plays a crucial role in the growth of plaques by promoting inflammation in a TRAF6-IKK-IRF5-dependent manner and inhibiting efferocytosis by suppressing GAS6 during proinflammatory conditions. Consequently, the use of anti-human CD147 antibodies presents a complementary therapeutic approach to the existing lipid-lowering strategies for treating atherosclerotic diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCRESAHA.123.323223DOI Listing

Publication Analysis

Top Keywords

cd147
13
myeloid-specific cd147
8
anti-human cd147
8
atherosclerosis
6
proinflammatory
5
cd147 sparks
4
sparks atherosclerosis
4
atherosclerosis driving
4
driving phenotype
4
phenotype impairing
4

Similar Publications

CD147 has the potential to serve as a specific target with therapeutic characteristics in several respiratory diseases. Studies have demonstrated that CD147 regulates levels of oxidative phosphorylation (OXPHOS) through the process of mitochondrial translocations. However, there is still limited insight in the distinct mechanism of CD147 in asthmatic macrophages.

View Article and Find Full Text PDF

Immunohistochemical Detection of CD147 Expression in Adenocarcinoma of the Prostate: A Case-Control Study.

Prostate Cancer

December 2024

Department of Histopathology and Cytology, Faculty of Medical Laboratory Sciences, Al-Neelain University, Khartoum, Sudan.

Prostate cancer is the most common noncutaneous malignancy among men worldwide, including in Sudan, where it represents a significant public health challenge. CD147, a transmembrane glycoprotein implicated in tumor progression, invasion, and metastasis, has shown potential as a prognostic biomarker in various cancers. This retrospective case-control study aimed to evaluate CD147 expression in prostate adenocarcinoma among Sudanese men and its association with tumor grade.

View Article and Find Full Text PDF

Basigin in cerebrovascular diseases: Roles, mechanisms, and therapeutic target potential.

Eur J Pharmacol

December 2024

Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou City, Henan Province, 450000, China. Electronic address:

Cerebrovascular diseases are major global health issues, responsible for significant morbidity and mortality. Basigin (additionally called CD147 or EMMPRIN) is a glycosylated transmembrane protein that facilitates intercellular communication. Recent research has highlighted the critical role of Basigin in inducing matrix metalloproteinases (MMPs), which contribute to the progression of cerebrovascular diseases.

View Article and Find Full Text PDF

RNA-binding protein HuR regulates the transition of septic AKI to CKD by modulating CD147.

Clin Sci (Lond)

January 2025

Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah Health Science, Salt Lake City, UT, USA.

Septic acute kidney injury (AKI) is an important risk factor for developing chronic kidney disease (CKD). Hu antigen R (HuR) is recognized as a crucial modulator in inflammation. We hypothesized that elevated HuR contributes to the transition from septic AKI to CKD by promoting persistent inflammation and fibrosis, and inhibition of HuR may reverse septic kidney injury.

View Article and Find Full Text PDF

The mitochondrial lactate oxidation complex: endpoint for carbohydrate carbon disposal.

Am J Physiol Endocrinol Metab

January 2025

Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States.

The lactate shuttle concept has revolutionized our understanding and study of metabolism in physiology, biochemistry, intermediary metabolism, nutrition, and medicine. Seminal findings of the mitochondrial lactate oxidation complex (mLOC) elucidated the architectural structure of its components. Here, we report that the mitochondrial pyruvate carrier (mPC) is an additional member of the mLOC in mouse muscle and C2C12 myoblasts and myotubes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!