The development of universal anode materials with superlative electrochemical performance poses a great challenge for rechargeable alkali metal (AM) ion battery technologies. In the present work, the viability of the gapless Dirac -BN (tetragonal boron nitride) monolayer as a lightweight binder-free anode has been systematically evaluated via comprehensive first-principles calculations. Aside from the desirable electronic conductivity, the -BN monolayer exhibits an excellent ionic conductivity as well due to its moderate affinity for Li, Na, and K atoms with favorable in-plane barriers of 0.36, 0.18, and 0.19 eV, respectively. Meanwhile, the presence of BN octagons allows the AM atoms to penetrate through the -BN monolayer. Excitingly, the host material delivers an ultrahigh specific capacity up to 1080 mA h g for Li, 5400 mA h g for Na, and 2160 mA h g for K in the wake of low mean open-circuit voltages of 0.033, 0.203, and 0.300 V at the half-cell level. According to the standard hydrogen electrode methodology, the energy densities are forecasted to be as large as 3240, 13500, and 5680 mW h g for Li, Na, and K ion batteries, respectively, with robust thermal stability up to at least 400 K. The safety and cycling durability of the -BN monolayer are jointly corroborated via the moderate mechanical strengths and ab initio molecular dynamics simulations at the maximum intercalated states, as well as via the small lattice changes and its ultrahigh tolerable ultimate tensile strain. These findings unambiguously promise that the -BN monolayer can serve as an appealing candidate for anode applications in AM ion batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.3c03307 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China.
Two-dimensional (2D) materials with spontaneous polarization can exhibit large second-order nonlinear optical (NLO) effects. Here, we present a series of stable distorted monolayers by using first-principles calculations and lattice vibration analysis. The structural distortion leads to a lower polar symmetry, giving rise to intrinsic ferroelectricity with a Curie point up to room temperature.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Physics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China.
Two-dimensional (2D) carbon allotropes, together with their binary and ternary counterparts, have attracted substantial research interest due to their peculiar geometries and properties. Among them, grapheneplus, a derivative of penta-graphene, has been proposed to exhibit unusual mechanical and electronic behaviour. In this work, we perform a comprehensive first-principles study on its isoelectronic and isostructural analogue, a grapheneplus-like BCN (gp-BCN) monolayer.
View Article and Find Full Text PDFNat Nanotechnol
January 2025
State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China.
Interfacial ferroelectricity emerges in non-centrosymmetric heterostructures consisting of non-polar van der Waals (vdW) layers. Ferroelectricity with concomitant Coulomb screening can switch topological currents or superconductivity and simulate synaptic response. So far, it has only been realized in bilayer graphene moiré superlattices, posing stringent requirements to constituent materials and twist angles.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Electrical Engineering, University at Buffalo, the State University of New York, Buffalo, New York 14260, United States.
Heterogeneous integration of emerging two-dimensional (2D) materials with mature three-dimensional (3D) silicon-based semiconductor technology presents a promising approach for the future development of energy-efficient, function-rich nanoelectronic devices. In this study, we designed a mixed-dimensional junction structure in which a 2D monolayer (e.g.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Institute de Quimica Computacional i Catálisi, Universitat de Girona, Girona 17003 Spain.
Creating sustainable and stable semiconductors for energy conversion via catalysis, such as water splitting and carbon dioxide reduction, is a major challenge in modern materials chemistry, propelled by the limited and dwindling reserves of platinum group metals. Two-dimensional hexagonal borocarbonitride (h-BCN) is a metal-free alternative and ternary semiconductor, possessing tunable electronic properties between that of hexagonal boron nitride (h-BN) and graphene, and has attracted significant attention as a nonmetallic catalyst for a host of technologically relevant chemical reactions. Herein, we use density functional theory to investigate the stability and optoelectronic properties of phase-separated monolayer h-BCN structures, varying carbon concentration and domain size.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!