The emergence of one-dimensional van der Waals heterostructures (1D vdWHs) opens up potential fields with unique properties, but precise synthesis remains a challenge. The utilization of mixed conductive types of carbon nanotubes as templates has imposed restrictions on the investigation of the electrical behavior and interlayer interaction of 1D vdWHs. In this study, we efficiently encapsulated silver iodide in high-purity semiconducting single-walled carbon nanotubes (sSWCNTs), forming 1D AgI@sSWCNT vdWHs. We characterized the semiconductor-metal transition and increased the carrier concentration of individual AgI@sSWCNTs via sensitive dielectric force microscopy and confirmed the results through electrical device tests. The electrical behavior transition was attributed to an interlayer charge transfer, as demonstrated by Kelvin probe force microscopy. Furthermore, we showed that this method of synthesizing 1D heterostructures can be extended to other metal halides. This work opens the door for the further exploration of the electrical properties of 1D vdWHs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.3c04298DOI Listing

Publication Analysis

Top Keywords

electrical behavior
12
interlayer charge
8
charge transfer
8
behavior transition
8
van der
8
der waals
8
waals heterostructures
8
carbon nanotubes
8
force microscopy
8
electrical
5

Similar Publications

Among 2-dimensional (2D) non-layered transition-metal chalcogenides (TMCs), cobalt sulfides are highly interesting because of their diverse structural phases and unique properties. The unique magnetic properties of TMCs have generated significant interest in their potential applications in future spintronic devices. In addition, their high conductivity, large specific surface area, and abundant active sites have attracted attention in the field of catalysis.

View Article and Find Full Text PDF

Two-dimensional (2D) materials are materials with a thickness of one or a few atoms with intriguing electrical, chemical, optical, electrochemical, and mechanical properties. Therefore, they are deemed candidates for ubiquitous engineering applications. Films and three-dimensional (3D) structures made from 2D materials introduce a distinct assembly structure that imparts the inherent properties of pristine 2D materials on a macroscopic scale.

View Article and Find Full Text PDF

High-Brightness Color-Tunable AC-Driven Quantum Dot Light-Emitting Diodes for Integrated Passive High-Electric-Field Contactless Detection.

ACS Appl Mater Interfaces

December 2024

Institute of Optoelectronics Technology, Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Beijing 100044, China.

This work explores the carrier recombination dynamics of AC-driven quantum dot (QD) light-emitting diodes (AC-QLEDs) and proposes their application in the field of electric field contactless detection. Different sequences of green QD (GQD)/red QD (RQD) bilayer thin films as the emission layer of AC-QLEDs were fabricated via film transfer printing to ensure the complete morphology of each layer. AC-QLEDs with the emission layer as the sequence of GQD + RQD (GR-QLEDs) show a significantly enhanced carrier recombination efficiency due to its stable energy level structure, achieving the highest peak brightness ever recorded for vertically emitting brightness of 1648.

View Article and Find Full Text PDF

Introduction: The effects of sex and apolipoprotein E (APOE)-Alzheimer's disease (AD) risk factors-on white matter microstructure are not well characterized.

Methods: Diffusion magnetic resonance imaging data from nine well-established longitudinal cohorts of aging were free water (FW)-corrected and harmonized. This dataset included 4741 participants (age = 73.

View Article and Find Full Text PDF

Although the medial temporal lobe (MTL) is traditionally considered a region dedicated to long-term memory, recent neuroimaging and intracranial recording evidence suggests that the MTL also contributes to certain aspects of visual short-term memory (VSTM), such as the quality or precision of retained VSTM content. This study aims to further investigate the MTL's role in VSTM precision through the application of transcranial direct current stimulation (tDCS) and functional magnetic resonance imaging (fMRI). Participants underwent 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!