AI Article Synopsis

  • Gelatin methacryloyl (GelMA) is a semi-synthetic polymer that can be fine-tuned to create hydrogels with various microstructures, which are important for many bioapplications.
  • Researchers explored how applying shear to a solution of GelMA and dextran can create different hydrogel structures and used rheology and UV-curing to study this process.
  • The findings reveal that changing factors like dextran concentration and pH can lead to diverse structures, such as aligned bands and porous microgels, showcasing the potential for developing advanced materials through this method.

Article Abstract

Gelatin methacryloyl (GelMA) is a widely used semi-synthetic polymer for a variety of bioapplications. However, the development of versatile GelMA hydrogels requires tuning of their microstructure. Herein, we report the possibility of preparing hydrogels with various microstructures under shear from an aqueous two-phase system (ATPS) consisting of GelMA and dextran. The influence of an applied preshear on dextran/GelMA droplets and bicontinuous systems is investigated by rheology that allows the application of a constant shear and is immediately followed by UV-curing of the GelMA-rich phase. The microstructure of the resulting hydrogels is examined by confocal laser scanning microscopy (CLSM). The results show that the GelMA string phase and GelMA hydrogels with aligned bands can be formed depending on the concentration of dextran and the applied preshear. The influence of the pH of the ATPS is investigated and demonstrates the formation of multiple emulsions upon decreasing the charge density of GelMA. The preshearing of multiple emulsions, following gelation, leads to the formation of porous GelMA microgels. The diversity of the formed structures highlights the application potential of preshearing ATPS in the development of functional soft materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3sm01365kDOI Listing

Publication Analysis

Top Keywords

gelatin methacryloyl
8
gelma hydrogels
8
applied preshear
8
multiple emulsions
8
gelma
7
hydrogels
5
structuring gelatin
4
methacryloyl dextran
4
dextran hydrogels
4
hydrogels microgels
4

Similar Publications

Dentin hypersensitivity (DH), marked by exposed dentinal tubules, presents as a sharp toothache triggered by stimuli and subsides when the stimuli are removed. To address the limitations of current commercial desensitizers in terms of acid resistance, friction resistance, and stability, a black phosphorus nanosheet-composited methacrylate gelatin hydrogel (GelMA/BP) is developed for DH treatment, leveraging the synergistic effects of photothermal therapy and biomineralization. Incorporating the BP nanosheet provided GelMA/BP with a stable photothermal response and the continuous release of phosphate anions, which blocked dentinal tubules by converting light energy into heat and initiating biomineralization.

View Article and Find Full Text PDF

A 3D bioprinted potential colorectal tumor model based on decellularized matrix/gelatin methacryloyl/nanoclay/sodium alginate hydrogel.

Int J Biol Macromol

December 2024

Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China. Electronic address:

Colorectal cancer (CRC) is now the third most common cancer worldwide. However, the development cycle for anticancer drugs is lengthy and the failure rate is high, highlighting the urgent need for new tumor models for CRC-related research. The decellular matrix (dECM) offers numerous cell adhesion sites, proteoglycan and cytokines.

View Article and Find Full Text PDF

Bioprinting has emerged as a powerful manufacturing platform for tissue engineering, enabling the fabrication of 3D living structures by assembling living cells, biological molecules, and biomaterials into these structures. Among various biomaterials, hydrogels have been increasingly used in developing bioinks suitable for 3D bioprinting for diverse human body tissues and organs. In particular, hydrogel blends combining gelatin and gelatin methacryloyl (GelMA; "GG hydrogels") receive significant attention for 3D bioprinting owing to their many advantages, such as excellent biocompatibility, biodegradability, intrinsic bioactive groups, and polymer networks that combine the thermoresponsive gelation feature of gelatin and chemically crosslinkable attribute of GelMA.

View Article and Find Full Text PDF

Suppression of FcεRI-evoked Degranulation in RBL-2H3 Cells on Gelatin Methacryloyl Hydrogel.

Cell Biochem Biophys

December 2024

School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan.

Cell-extracellular matrix (ECM) interactions play multiple roles in developmental, physiological, and pathological processes. ECM stiffness substantially affects cellular morphology, migration, and function. In this study, we investigated the effect of ECM comprising gelatin methacryloyl (GelMA) on the activation of rat basophilic leukemia (RBL-2H3) cells, a model mast cell line.

View Article and Find Full Text PDF

Pathological-microenvironment responsive injectable GelMA hydrogel with visualized biodegradation for pressure-assisted treatment of hypertrophic scars.

Int J Biol Macromol

December 2024

Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China. Electronic address:

Intralesional injection of 5-fluorouracil for the clinical treatment of hypertrophic scars (HS) remains challenging due to its short half-life, as well as the absence of evidence-based dosage and frequency injection guidelines. Herein, we developed a matrix metalloproteinases (MMPs)/reactive oxygen species (ROS)-responsive injectable prodrug hydrogel (GFP) that exhibits sustained drug release and fluorescence imaging capability, aiming to facilitate the optimization of injection dosage and frequency in HS treatment. The GFP hydrogel comprises gelatin methacryloyl and pendant methacryloyl-decorated tetrapeptide (PPPK) with 5-fluorouracil acetic acid/rhodamine B at the N-terminus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!