AI Article Synopsis

  • Neutralizing monoclonal antibodies (mAbs) are special proteins that can help fight off COVID-19 by stopping the virus from entering our cells.
  • Scientists need quicker ways to create these mAbs because the virus can change a lot and get tougher to fight.
  • Using advanced techniques like single-cell RNA sequencing and cool microfluidic technology has sped up the discovery of new mAbs to take on the virus even better.

Article Abstract

As a class of antibodies that specifically bind to a virus and block its entry, neutralizing monoclonal antibodies (neutralizing mAbs) have been recognized as a top choice for combating COVID-19 due to their high specificity and efficacy in treating serious infections. Although conventional approaches for neutralizing mAb development have been optimized for decades, there is an urgent need for workflows with higher efficiency due to time-sensitive concerns, including the high mutation rate of SARS-CoV-2. One promising approach is the identification of neutralizing mAb candidates single-cell RNA sequencing (RNA-seq), as each B cell has a unique transcript sequence corresponding to its secreted antibody. The state-of-the-art high-throughput single-cell sequencing technologies, which have been greatly facilitated by advances in microfluidics, have greatly accelerated the process of neutralizing mAb development. Here, we provide an overview of the general procedures for high-throughput single-cell RNA-seq enabled by breakthroughs in droplet microfluidics, introduce revolutionary approaches that combine single-cell RNA-seq to facilitate the development of neutralizing mAbs against SARS-CoV-2, and outline future steps that need to be taken to further improve development strategies for effective treatments against infectious diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3lc00749aDOI Listing

Publication Analysis

Top Keywords

neutralizing mab
12
single-cell rna
8
rna sequencing
8
development neutralizing
8
neutralizing monoclonal
8
monoclonal antibodies
8
neutralizing mabs
8
mab development
8
high-throughput single-cell
8
single-cell rna-seq
8

Similar Publications

Dengue virus (DENV) is a rapidly expanding infectious disease threat that causes an estimated 100 million symptomatic infections every year. A barrier to preventing DENV infections with traditional vaccines or prophylactic monoclonal antibody (mAb) therapies is the phenomenon of Antibody-Dependent Enhancement (ADE), wherein sub-neutralizing levels of DENV-specific IgG antibodies can enhance infection and pathogenesis rather than providing protection from disease. Fortunately, IgG is not the only antibody isotype capable of binding and neutralizing DENV, as DENV-specific IgA1 isotype mAbs can bind and neutralize DENV while without exhibiting any ADE activity.

View Article and Find Full Text PDF

Preparation and application of porcine broadly neutralizing monoclonal antibodies in an immunoassay for efficiently detecting neutralizing antibodies against foot-and-mouth disease virus serotype O.

Microbiol Spectr

January 2025

State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.

Neutralizing antibodies provide vital protection against foot-and-mouth disease virus (FMDV). The virus neutralization test (VNT) is a gold standard method for the detection of neutralizing antibodies. However, its application is limited due to the requirement for live virus and unsuitability for large-scale serological surveillance.

View Article and Find Full Text PDF

Plague, caused by , poses a public health threat not only due to sporadic outbreaks across the globe but also due to its potential as a biothreat agent. Ironically, among the seven deadliest pandemics in global history, three were caused by . Pneumonic plague, the more contagious and severe form of the disease, is difficult to contain, requiring either prophylactic antibiotic treatment or vaccination.

View Article and Find Full Text PDF

Introduction: Japanese encephalitis virus (JEV) and Zika virus (ZIKV) are prevalent in over 80 countries or territories worldwide, causing hundreds of thousands of cases annually. But currently there is a lack of specific antiviral agents and effective vaccines.

Methods: In the present study, to identify human neutralizing monoclonal antibody (mAb) against JEV or/and ZIKV, we isolated ZIKV-E protein-binding B cells from the peripheral venous blood of a healthy volunteer who had received the JEV live-attenuated vaccine and performed 10× Genomics transcriptome sequencing and BCR sequencing analysis, we then obtained the V region amino acid sequences of a novel mAb LZY3412.

View Article and Find Full Text PDF

BK polyomavirus (BKV) causes polyomavirus-associated nephropathy (PyVAN) and polyomavirus-associated hemorrhagic cystitis (PyVHC) following kidney transplantation and allogeneic hematopoietic stem cell transplantation (HST). BKV strains fall into four distinct genotypes (BKV-I, -II, -III, and -IV) with more than 80% of individuals are seropositive against BKV-I genotype, while the seroprevalence of the other four genotypes is lower. PyVAN and PyVHC occurs in immunosuppressed (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!