This chapter presents a practical guide for conducting sentiment analysis using Natural Language Processing (NLP) techniques in the domain of tick-borne disease text. The aim is to demonstrate the process of how the presence of bias in the discourse surrounding chronic manifestations of the disease can be evaluated. The goal is to use a dataset of 5643 abstracts collected from scientific journals on the topic of chronic Lyme disease to demonstrate using Python, the steps for conducting sentiment analysis using pretrained language models and the process of validating the preliminary results using both interpretable machine learning tools, as well as a novel methodology of leveraging emerging state-of-the-art large language models like ChatGPT. This serves as a useful resource for researchers and practitioners interested in using NLP techniques for sentiment analysis in the medical domain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3561-2_14 | DOI Listing |
Sci Rep
January 2025
Key Laboratory of Ethnic Language Intelligent Analysis and Security Governance of MOE, Minzu University of China, Beijing, 100081, China.
Aspect Category Sentiment Analysis (ACSA) is a fine-grained sentiment analysis task aimed at predicting the sentiment polarity associated with aspect categories within a sentence.Most existing ACSA methods are based on a given aspect category to locate sentiment words related to it. When irrelevant sentiment words have semantic meaning for the given aspect category, it may cause the problem that sentiment words cannot be matched with aspect categories.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Computer Science, College of Computer and Information Sciences, King Saud University, 11543, Riyadh, Saudi Arabia.
Understanding the nuanced emotions and points of view included in user-generated content remains challenging, even though text data analysis for mental health is a crucial instrument for assessing emotional well-being. Most current models neglect the significance of integrating viewpoints in comprehending mental health in favor of single-task learning. To offer a more thorough knowledge of mental health, in this study, we present an Opinion-Enhanced Hybrid BERT Model (Opinion-BERT), built to handle multi-task learning for simultaneous sentiment and status categorization.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Unitat de Recerca i Innovació, Gerència d'Atenció Primària i a la Comunitat de la Catalunya Central, Institut Català de la Salut, Sant Fruitós de Bages, Spain.
Background: The COVID-19 pandemic reshaped social dynamics, fostering reliance on social media for information, connection, and collective sense-making. Understanding how citizens navigate a global health crisis in varying cultural and economic contexts is crucial for effective crisis communication.
Objective: This study examines the evolution of citizen collective sense-making during the COVID-19 pandemic by analyzing social media discourse across Italy, the United Kingdom, and Egypt, representing diverse economic and cultural contexts.
PLoS One
January 2025
School of Government, Adolfo Ibanez University, Santiago, Chile.
This study demonstrates the use of GPT-4 and variants, advanced language models readily accessible to many social scientists, in extracting political networks from text. This approach showcases the novel integration of GPT-4's capabilities in entity recognition, relation extraction, entity linking, and sentiment analysis into a single cohesive process. Based on a corpus of 1009 Chilean political news articles, the study validates the graph extraction method using 'legislative agreement', i.
View Article and Find Full Text PDFFront Public Health
January 2025
School of Journalism and Communication, Guangxi University, Nanning, China.
With the development of social media platforms such as Weibo, they have provided a broad platform for the expression of public sentiments during the pandemic. This study aims to explore the emotional attitudes of Chinese netizens toward the COVID-19 opening-up policies and their related thematic characteristics. Using Python, 145,851 texts were collected from the Weibo platform.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!