Background: Epithelial ovarian cancer (EOC) is featured by rapid progression and dismal outcomes clinically. Chaperonin Containing TCP1 Subunit 2 (CCT2) was identified as a crucial regulator for tumor progression, however, its exact role in EOC remained largely unknown.

Methods: CCT2 expression and prognostic value in EOC samples were assessed according to TCGA dataset. Proliferation and mobility potentials were assessed by CCK8, colony-formation, wound healing, and Transwell assays. Cancer stem cell (CSC) traits were evaluated by RT-PCR, WB assays, sphere-forming assay and chemoresistance analysis. Bioinformatic analysis, co-IP assays and ubiquitin assays were performed to explore the mechanisms of CCT2 on EOC cells.

Results: CCT2 highly expressed in EOC tissues and predicted poor prognosis of EOC patients by TCGA analysis. Silencing CCT2 significantly restrained cell proliferation, migration, and invasion. Moreover, CCT2 could effectively trigger epithelial-mesenchymal transition to confer extensive invasion potentials to EOC cells, Importantly, CCT2 positively correlated with CSC markers in EOC, and CCT2 knockdown impaired CSC traits and sensitize EOC cells to conventional chemotherapy regimens. Contrarily, overexpressing CCT2 achieved opposite results. Mechanistically, CCT2 exerted its pro-oncogene function by triggering Wnt/β-catenin signaling. Specifically, CCT2 could recruit HSP105-PP2A complex, a well-established dephosphorylation complex, to β-catenin via direct physical interaction to prevent phosphorylation-induced proteasomal degradation of β-catenin, resulting in intracellular accumulation of active β-catenin and increased signaling activity.

Conclusions: CCT2 was a novel promotor for EOC progression and a crucial sustainer for CSC traits mainly by preventing β-catenin degradation. Targeting CCT2 may represent a promising therapeutic strategy for EOC.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-023-09047-3DOI Listing

Publication Analysis

Top Keywords

cct2
14
csc traits
12
eoc
11
proteasomal degradation
8
cancer stem
8
stem cell
8
tumor progression
8
epithelial ovarian
8
ovarian cancer
8
eoc cells
8

Similar Publications

Advances in Aggrephagy: Mechanisms, Disease Implications, and Therapeutic Strategies.

J Cell Physiol

January 2025

Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.

The accumulation of misfolded proteins within cells leads to the formation of protein aggregates that disrupt normal cellular functions and contribute to a range of human pathologies, notably neurodegenerative disorders. Consequently, the investigation into the mechanisms of aggregate formation and their subsequent clearance is of considerable importance for the development of therapeutic strategies. The clearance of protein aggregates is predominantly achieved via the autophagy-lysosomal pathway, a process known as aggrephagy.

View Article and Find Full Text PDF

Energy deprivation-induced autophagy and aggrephagy: insights from yeast and mammals.

J Zhejiang Univ Sci B

April 2024

Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.

Article Synopsis
  • Autophagy is vital for cellular balance and responds to different stimuli, but there's limited understanding of how it works under energy deprivation.
  • Researchers are focused on how cells detect energy shortages and start autophagy, using various model organisms and mammalian cells.
  • Key factors involved in this process include reactive oxygen species (ROS), the DNA damage sensor Mec1, and mitochondrial aerobic respiration.
View Article and Find Full Text PDF

Neuroprotective Effects of Chaperonin Containing TCP1 Subunit 2 (CCT2) on Motor Neurons Following Oxidative or Ischemic Stress.

Neurochem Res

November 2024

Department of Neurosurgery, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, 07441, South Korea.

Chaperonin containing TCP1 (CCT) is an essential protein that controls proteostasis following spinal cord damage. In particular, CCT2 plays an important role in neuronal death in various neurological disorders; however, few studies have investigated the effects of CCT2 on ischemic damage in the spinal cord. In the present study, we synthesized a cell-permeable Tat-CCT2 fusion protein and observed its effects on HO-induced oxidative damage in NSC34 motoneuron-like cells and in the spinal cord after ischemic injury.

View Article and Find Full Text PDF

Unveiling biomarker detection in Alzheimer's disease: a computational approach to microarray analysis.

3 Biotech

December 2024

Department of Biosciences, Manipal University Jaipur, Near GVK Toll Plaza, Jaipur-Ajmer Express Highway, Dehmi Kalan, Jaipur, Rajasthan 303007 India.

Article Synopsis
  • Alzheimer's disease (AD) is a major neurodegenerative disorder, and understanding its molecular mechanisms is crucial for developing predictive biomarkers and treatments.
  • Researchers analyzed gene expression profiles from 161 samples (87 from AD patients and 74 controls) to identify differentially expressed genes (DEGs) and their connections to other neurological diseases.
  • The study identified key hub genes related to AD pathology, suggesting potential targets for therapeutic approaches, including links to osteoporosis, altered nucleotide metabolism, microtubule stability, and blood-brain barrier dysfunction.
View Article and Find Full Text PDF

The essential role of CCT2 in the regulation of aggrephagy.

Front Aging Neurosci

October 2024

Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.

Protein aggregation, a defining characteristic of numerous human diseases, poses a significant challenge to cellular health. Autophagy, an essential cellular recycling process, specifically targets and degrades these harmful protein aggregates through a specialized mechanism known as aggrephagy. However, the precise mechanisms underlying the exquisite selectivity of aggrephagy in identifying and eliminating only aggregated proteins while sparing healthy cellular components have remained enigmatic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!