We report simulation studies of 33 single intrinsically disordered proteins (IDPs) using coarse-grained bead-spring models where interactions among different amino acids are introduced through a hydropathy matrix and additional screened Coulomb interaction for the charged amino acid beads. Our simulation studies of two different hydropathy scales (HPS1, HPS2) [Dignon et al., PLoS Comput. Biol. 14, e1005941 (2018); Tesei et al. Proc. Natl. Acad. Sci. U. S. A. 118, e2111696118 (2021)] and the comparison with the existing experimental data indicate an optimal interaction parameter ϵ = 0.1 and 0.2 kcal/mol for the HPS1 and HPS2 hydropathy scales. We use these best-fit parameters to investigate both the universal aspects as well as the fine structures of the individual IDPs by introducing additional characteristics. (i) First, we investigate the polymer-specific scaling relations of the IDPs in comparison to the universal scaling relations [Bair et al., J. Chem. Phys. 158, 204902 (2023)] for the homopolymers. By studying the scaled end-to-end distances ⟨RN2⟩/(2Lℓp) and the scaled transverse fluctuations l̃⊥2=⟨l⊥2⟩/L, we demonstrate that IDPs are broadly characterized with a Flory exponent of ν ≃ 0.56 with the conclusion that conformations of the IDPs interpolate between Gaussian and self-avoiding random walk chains. Then, we introduce (ii) Wilson charge index (W) that captures the essential features of charge interactions and distribution in the sequence space and (iii) a skewness index (S) that captures the finer shape variation of the gyration radii distributions as a function of the net charge per residue and charge asymmetry parameter. Finally, our study of the (iv) variation of ⟨Rg⟩ as a function of salt concentration provides another important metric to bring out finer characteristics of the IDPs, which may carry relevant information for the origin of life.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0176306 | DOI Listing |
Nat Commun
December 2024
Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.
The emergence of single-atom catalysts offers exciting prospects for the green production of hydrogen peroxide; however, their optimal local structure and the underlying structure-activity relationships remain unclear. Here we show trace Fe, up to 278 mg/kg and derived from microbial protein, serve as precursors to synthesize a variety of Fe single-atom catalysts containing FeNO (1 ≤ x ≤ 4) moieties through controlled pyrolysis. These moieties resemble the structural features of nonheme Fe-dependent enzymes while being effectively confined on a microbe-derived, electrically conductive carbon support, enabling high-current density electrolysis.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Macao Institute of Materials Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macau SAR 999078, China.
The powerful data processing and pattern recognition capabilities of machine learning (ML) technology have provided technical support for the innovation in computational chemistry. Compared with traditional ML and deep learning (DL) techniques, transformers possess fine-grained feature-capturing abilities, which are able to efficiently and accurately model the dependencies of long-sequence data, simulate complex and diverse chemical spaces, and explore the computational logic behind the data. In this Perspective, we provide an overview of the application of transformer models in computational chemistry.
View Article and Find Full Text PDFCytojournal
November 2024
Department of Pathology and Genomic Medicine, Houston Methodist, Houston, Texas, USA.
Objective: Diagnosing neoplasms of the salivary gland is challenging, as morphologic features of these tumors are complex, and well-defined diagnostic categories have overlapping features. Many salivary gland neoplasms are associated with recurrent genetic alterations. The utilization of RNA-based targeted next-generation sequencing (NGS) panels for the detection of cancer-driving translocations and mutations is emerging in the clinical laboratory.
View Article and Find Full Text PDFDrug Discov Today
December 2024
State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, China.
Drug discovery is essential in human diseases but faces challenges because of the vast chemical space. Molecular generation models have become powerful tools to accelerate drug design by efficiently exploring chemical space. 3D molecular generation has gained popularity for explicitly incorporating spatial structural information to generate rational molecules.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
High-temperature graphitization of graphene oxide (GO) is a crucial step for enhancing interlayer stacking and repairing the in-plane defects of reduced graphene oxide (rGO) films. However, the fine control of the structural repair and reducing the energy consumption in thermal treatment remain challenges. In this study, ab-initio molecular dynamics simulations combined with experiments are used to investigate the structural evolution of rGO upon thermal annealing, with or without the presence of single-layer graphene (SLG).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!