Binder-free barium-implanted MnO2 nanosheets on carbon cloth for flexible zinc-ion batteries.

J Chem Phys

School of Energy and Electrical Engineering, Qinghai University, No. 251, Ningda Road, Xi'ning 810016, China.

Published: January 2024

The intrinsically low electrical conductivity and poor structural fragility of MnO2 have significantly hampered the zinc storage performance. In this work, Ba2+-implanted δ-MnO2 nanosheets have been hydrothermally grown on a carbon cloth (Ba-MnO2@CC) as an extremely stable and efficient cathode material of aqueous zinc-ion batteries. The three-dimensionally porous architecture composed of interwoven thin MnO2 nanosheets effectively shortens the electron/ion transport distances, enlarges the electrode/electrolyte contact area, and increases the active sites for the electrochemical reaction. Meanwhile, Ba2+ could function as an interlayer pillar to stabilize the crystal structure of MnO2. Consequently, the as-optimized Ba-MnO2@CC exhibits remarkable Zn2+ storage capabilities, such as a high capacity (305 mAh g-1 at 0.2 A g-1), prolonged lifespan (95% retention after a 200-cycling test), and superb rate capability. The binder-free cathode is also applicable for flexible energy storage devices with attractive properties. The present investigation provides important insights into designing advanced cathode materials toward wearable electronics.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0184529DOI Listing

Publication Analysis

Top Keywords

mno2 nanosheets
8
carbon cloth
8
zinc-ion batteries
8
binder-free barium-implanted
4
mno2
4
barium-implanted mno2
4
nanosheets carbon
4
cloth flexible
4
flexible zinc-ion
4
batteries intrinsically
4

Similar Publications

Tumor microenvironment-activated and near-infrared light-driven free radicals amplifier for tetra-modal cancer imaging and synergistic treatment.

J Colloid Interface Sci

March 2025

Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, China; Joint Research Center in Biosensing and Precision Theranostics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, China; Hong Kong Polytechnic Shenzhen Research Institute, Shenzhen 518057, China. Electronic address:

The tumor microenvironment (TME) exhibits a specific feature of hypoxia, which poses significant challenges for oxygen (O)-dependent treatments. In this study, we developed an intelligent nanoplatform (PEGylated AIPH@MSN/CDs-MnO, denoted as A@M/C-Mn) by integrating a photosensitizer of red carbon dots (CDs) with a thermolabile initiator-loaded mesoporous silica nanoparticle (AIPH@MSN, denoted as A@M), and then growing manganese dioxide nanosheets (MnO NS) in situ and PEGylating the structure to achieve TME-responsive synergistic diagnosis and phototherapy against hypoxic tumors. The outer-layer MnO NS has the capability to decompose endogenous hydrogen peroxide (HO) in the acidic TME, thereby producing O to alleviate hypoxia while releasing Mn.

View Article and Find Full Text PDF

Manganese valence modulation in-MnOvia F-doping for enhanced electrocatalytic oxygen evolution reaction.

Nanotechnology

February 2025

College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China.

Manganese dioxide (MnO) is recognized as a promising candidate for the oxygen evolution reaction (OER); however, its practical application is hindered by limited active sites and low electrical conductivity. Fluorine (F), known for its strong electron affinity and electronegativity, can modulate the surface electronic structure and physicochemical properties of catalysts. In this study, we synthesized MnOnanosheets and fluorine-doped MnO(F-MnO) using simple hydrothermal and ion-exchange methods.

View Article and Find Full Text PDF

Fluorescent iron nanoclusters are emerging fluorescent nanomaterials. Herein, we synthesized hemoglobin-coated iron nanoclusters (Hb-Fe NCs) with a significant fluorescence emission peak at 615 nm and investigated the inner-filter effect of fluorescence induced by a manganese dioxide nanosheet (MnO NS). The fluorescence quenching of Hb-Fe NCs by a MnO NS can be significantly reversed by the addition of ascorbic acid.

View Article and Find Full Text PDF

A fluorescence probe for "switch-on" detection of alkaline phosphatase (ALP) was developed based on Au nanoclusters anchored MnO nanosheets (Au NCs-MnO NSs), which were synthesized using bovine serum albumin (BSA) as template through a simple one-pot approach. In the sensing system, MnO NSs function as both energy acceptors and target identifiers, effectively quenches the fluorescence of Au NCs via fluorescence resonance energy transfer (FRET). The presence of ALP catalyzes the hydrolysis of L-ascorbic acid-2-phosphate (AAP) to ascorbic acid (AA), reducing MnO NSs to Mn and facilitate the fluorescence recovery of Au NCs.

View Article and Find Full Text PDF

Photocatalytic degradation of NO by MnO catalyst: The decisive relationship between crystal phase, morphology and activity.

J Hazard Mater

January 2025

College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, Sichuan 610065, China; National Engineering Research Center for Flue Gas Desulfurization, Chengdu, Sichuan 610065, China; Industrial Technology Research Institute, Sichuan University, Yibin 644004, China. Electronic address:

This study investigates the critical relationship between the crystal phase, morphology, and photocatalytic activity of MnO. The δ-MnO nanosheets, characterized by multiple exposed crystal planes forming junctions, exhibit optimized optical and electrical properties. Oxygen vacancy concentrations were observed in the order δ-MnO > γ-MnO > α-MnO, with corresponding increases in band gap width from 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!