Biodiesel production in India: Prospects, challenges, and sustainable directions.

Biotechnol Bioeng

Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Saveetha University, Chennai, Tamil Nadu, India.

Published: March 2024

Biodiesel has the potential to serve as a feasible substitute for fossil fuels in many sectors, including transportation and internal combustion engines, without requiring extensive modifications. UsinHemg alternative energy sources, including biodiesel, is necessary to effectively tackle the growing demand predominantly observed in the transportation sector. This review is aimed to examine the technological progress, potential benefits, obstacles, and prospects associated with using biodiesel in India. India exhibits a significant potential for biodiesel production due to the abundance of various biofuel crops within its territory. The information supplied includes recent information from official government reports and literature. Collaborative efforts among all stakeholders in the energy industry can achieve the realization of reducing imports of petroleum-based fuel. However, it is essential to consider several significant elements specific to the Indian context when considering the utilization of biodiesel. The reported findings in this research are expected to shed light on the current and prospects of biodiesel deployment in India.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.28643DOI Listing

Publication Analysis

Top Keywords

biodiesel production
8
biodiesel
7
india
4
production india
4
india prospects
4
prospects challenges
4
challenges sustainable
4
sustainable directions
4
directions biodiesel
4
biodiesel potential
4

Similar Publications

This study investigates the potential of phototrophic microalgae, specifically Chlorella protothecoides, for biological wastewater treatment, with a focus on the effects of air temperature and CO concentration on nutrient removal from tertiary municipal wastewater. Utilizing both the Monod and Arrhenius kinetic models, the research examines how temperature and nutrient availability influence microalgal growth and nutrient removal. The study finds that optimal biomass productivity occurs at 25 °C, with growth slowing at higher temperatures (30 °C, 40 °C, and 45 °C).

View Article and Find Full Text PDF

seed oil for possible human consumption: A toxicological assessment of its phorbol esters.

Toxicol Rep

June 2025

Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315048, China.

seeds are known for their high oil content, and the oil extracted from these seeds has been traditionally utilized in biodiesel production. The presence of toxic compounds, specifically phorbol esters (PEs), in seed oil (JCSO) has blocked its use for human consumption. This article presents a thorough literature review that summarizes the latest research on the toxicological effects, including acute toxicity, genotoxicity, carcinogenicity, and chronic toxicity associated with phorbol esters (JCPEs).

View Article and Find Full Text PDF

Glycerol carbonate (GC) can be produced from glycerol (GL), a low-value byproduct in the biodiesel industry. In this work, continuous processes of GC production via transesterification from crude GL and diethyl carbonate (DEC) were developed using Aspen Plus. Two cases were considered, and their process performances were compared.

View Article and Find Full Text PDF

In pursuit of sustainability and resource efficiency, concept of the circular economy has emerged as a promising framework for industries worldwide. The global fish processing industry generates a significant amount of waste, posing environmental challenges and economic inefficiencies. The substantial volume of fish waste generated globally along with its environmental impact highlights the urgent need to adopt sustainable practices.

View Article and Find Full Text PDF

Redefining the product portfolio of oilcane bagasse biorefinery: Recovering natural colorants, vegetative lipids and sugars.

Bioresour Technol

January 2025

Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania Avenue, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Electronic address:

Bioenergy crops have been known for their ability to produce biofuels and bioproducts. In this study, the product portfolio of recently developed transgenic sugarcane (oilcane) bagasse has been redefined for recovering natural pigments (anthocyanins), sugars, and vegetative lipids.The total anthocyanin content in oilcane bagasse has been estimated as 92.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!