Background And Purpose: Brainomix e-Stroke is an artificial intelligence-based decision support tool that aids the interpretation of CT imaging in the context of acute stroke. While e-Stroke has the potential to improve the speed and accuracy of diagnosis, real-world validation is essential. The aim of this study was to prospectively evaluate the performance of Brainomix e-Stroke in an unselected cohort of patients with suspected acute ischaemic stroke.
Methods: The study cohort included all patients admitted to the University College London Hospital Hyperacute Stroke Unit between October 2021 and April 2022. For e-ASPECTS and e-CTA, the ground truth was determined by a neuroradiologist with access to all clinical and imaging data. For e-CTP, the values of the core infarct and ischaemic penumbra were compared with those derived from syngo.via, an alternate software used at our institution.
Results: 1163 studies were performed in 551 patients admitted during the study period. Of these, 1130 (97.2%) were successfully processed by e-Stroke in an average of 4 min. For identifying acute middle cerebral artery territory ischaemia, e-ASPECTS had an accuracy of 77.0% and was more specific (83.5%) than sensitive (58.6%). The accuracy for identifying hyperdense thrombus was lower (69.1%), which was mainly due to many false positives (positive predictive value of 22.9%). Identification of acute haemorrhage was highly accurate (97.8%) with a sensitivity of 100% and a specificity of 97.6%; false positives were typically caused by areas of calcification. The accuracy of e-CTA for large vessel occlusions was 91.5%. The core infarct and ischaemic penumbra volumes provided by e-CTP strongly correlated with those provided by syngo.via (ρ=0.804-0.979).
Conclusion: Brainomix e-Stroke software provides rapid and reliable analysis of CT imaging in the acute stroke setting although, in line with the manufacturer's guidance, it should be used as an adjunct to expert interpretation rather than a standalone decision-making tool.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732836 | PMC |
http://dx.doi.org/10.1136/svn-2023-002859 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!