Background: Hybridization is considered as an important model of speciation, but the evolutionary process of natural hybridization is still poorly characterized in Lycoris. To reveal the phylogenetic relationship of two new putative natural hybrids in Lycoris, morphological, karyotypic and chloroplast genomic data of four Lycoris species were analyzed in this study.
Results: Two putative natural hybrids (2n = 18 = 4 m + 5t + 6st + 3 T) possessed obvious heterozygosity features of L. radiata (2n = 22 = 10t + 12st) and L. aurea (2n = 14 = 8 m + 6 T) in morphology (e.g. leaf shape and flower color), karyotype (e.g. chromosome numbers, CPD/DAPI bands, 45S rDNA-FISH signals etc.) and chloroplast genomes. Among four Lycoris species, the composition and structure features of chloroplast genomes between L. radiata and the putative natural hybrid 1 (L. hunanensis), while L. aurea and the hybrid 2, were completely the same or highly similar, respectively. However, the features of the cp genomes between L. radiata and the hybrid 2, while L. aurea and the hybrid 1, including IR-LSC/SSC boundaries, SSRs, SNPs, and SNVs etc., were significantly different, respectively. Combining the karyotypes and cp genomes analysis, we affirmed that the natural hybrid 1 originated from the natural hybridization of L. radiata (♀) × L. aurea (♂), while the natural hybrid 2 from the hybridization of L. radiata (♂) × L. aurea (♀).
Conclusion: The strong evidences for natural hybridization between L. radiata (2n = 22) and L. aurea (2n = 14) were found based on morphological, karyotypic and chloroplast genomic data. Their reciprocal hybridization gave rise to two new taxa (2n = 18) of Lycoris. This study revealed the origin of two new species of Lycoris and strongly supported the role of natural hybridization that facilitated lineage diversification in this genus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10759762 | PMC |
http://dx.doi.org/10.1186/s12870-023-04681-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!