Artisanal cheese from Serra Geral, Minas Gerais, Brazil, stands out for its cultural asset and socio-economic relevance. However, standards of identity and quality and the peculiar terroir associated with the edaphoclimatic conditions have not been established. Therefore, the production flow diagram and the physico-chemical and microbiological quality of the raw milk, pingo (natural starter culture), production benches, water and fresh cheese were investigated for the first time. In addition, lactic acid bacteria (LAB) from cheese and its production environment were identified by MALDI-TOF. For that, 12 cheese making facilities were selected. The raw milk and pingo showed adequate physico-chemical characteristics for cheesemaking; however, high microbial counts were found. In the water, total and thermotolerant coliforms were also identified. The fresh cheeses were classified as 'high moisture and fat' and 'soft mass'. Most physico-chemical parameters were satisfactory; however, there were high counts of total coliforms, Staphylococcus spp. and coagulase-positive staphylococci. There were high counts of LAB in the raw milk, pingo, bench surface and fresh cheese. A total of 84 microbial biotypes from MRS agar were isolated. Lactococcus lactis was the predominant LAB, followed by Lactococcus garvieae. Leuconostoc mesenteroides (benches), Leuconostoc pseudomesenteroides (fresh cheese), and Enterococcus faecium (pingo) were identified sporadically. These results indicate the risks to public health associated with the consumption of the fresh cheese, and measures to improve its safety are needed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2023.113831 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
January 2025
Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India. Electronic address:
Milk, a complex fluid renowned for abundance of vitamins and immune-boosting antibodies, holds a pivotal position in human nutrition. The research delves into the fundamental constituents of milk, focusing on cis-fatty acids (cis-FA), trans-fatty acids (trans-FA), and theα-helixstructure found in proteins. These constituents are instrumental in the determination of milk quality and its nutritional value.
View Article and Find Full Text PDFFood Chem X
January 2025
Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China.
In this study, raw milk was collected from three different grades of pastures and processed by pasteurization, blending and ultra-high temperature sterilization (UHT) in a factory production line with a feed size of 10 tons. Additionally, all samples (from raw milk to UHT milk samples) were analyzed by -nose and GC-MS. Key flavor compounds such as 2-heptanone, hexanal, nonanal, 3-methyl-butanal, and dimethyl sulfide were found.
View Article and Find Full Text PDFFood Chem
January 2025
University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
The complexity of modern food supply chains limits the effectiveness of targeted approaches to address food traceability issues. Untargeted metabolomics provides a comprehensive profile of small molecules present within biological samples. In this study, the potential of ultra-high performance liquid chromatography-ion mobility-high resolution mass spectrometry (UHPLC-IMS-HRMS) to discriminate bovine milk samples collected at individual level was evaluated for traceability purposes.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Organization (AREEO), Karaj, Iran.
Brucella spp. is the bacterium responsible for brucellosis, a zoonotic infection that affects humans. This disease poses significant health challenges and contributes to poverty, particularly in developing countries.
View Article and Find Full Text PDFFoods
December 2024
Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China.
This study investigated the variations and alterations in the concentrations of plasmin system components in raw and UHT (ultra-high-temperature) milk under cold stress (WCT ≤ -25 °C), heat stress (THI ≥ 80), and normal (THI < 70 and WCT ≥ -10 °C) circumstances. The findings indicated elevated amounts of plasmin system components in cold-stressed raw milk. While storing UHT milk at 25 °C, the concentrations and activity of plasmin in the milk exhibited an initial increase followed by a decrease, peaking around the 30th day.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!