Zinc oxide nanoparticles enhance plasmid transfer among growth-promoting endophytes in Arabidopsis thaliana.

Sci Total Environ

School of Environment, Beijing Normal University, Beijing 100857, China. Electronic address:

Published: February 2024

Nanoparticles (NPs) hold great promise for agricultural applications, yet their potential impact on exogenous gene transfer within plant remains poorly understood. In this study, we utilized the non-conjugative plasmid pCAMBIA1300, harboring the bialaphos resistance (bar) gene expressed in plant and the kanamycin resistance (kanR) gene as selectable marker in bacteria. Our results revealed a significant increase in the transfer of plasmid (via carrier Escherichia coli DH5α), both intra- and inter-species within the endophyte, when Arabidopsis thaliana was exposed to environmentally relevant level of zinc oxide (ZnO) NPs at a concentration of 0.7 μg/mL throughout its lifespan. Intriguingly, the plasmid exhibited selective transfer to growth-promoting endophytes, such as Enterobacter, Serratia, and Achromobacter, with the presence of ZnO NPs expanding the pool of potential recipients. This result is due to the facilitation of an endophytic and mutualistic lifestyle of invasive E. coli DH5α and the enrichment of beneficial bacteria aided by ZnO NPs. The plant's descendant generations did not express the bar gene, and the endophytes carrying the exogenous plasmid did not transmit it to sub sequent generation. This research provides crucial insights for assessing the potential risks associated with gene contamination and ensuring the safe and sustainable use of NPs in agriculture.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.169682DOI Listing

Publication Analysis

Top Keywords

zno nps
12
zinc oxide
8
transfer growth-promoting
8
growth-promoting endophytes
8
arabidopsis thaliana
8
bar gene
8
coli dh5α
8
plasmid
5
nps
5
gene
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!