Marine microdebris pollution in sediments from three environmental coastal areas in the southwestern Argentine Atlantic.

Sci Total Environ

Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas. Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina.

Published: February 2024

Microplastics (MPs) and antifouling paint particles (APPs) are important components of marine microdebris (MDs), which constitute a potential environmental risk. This study analyzed baseline contamination levels of MDs and mesodebris (MesDs) in intertidal sediments at different depths, exploring the geomorphological influence in three Argentine coastal environments: Bahía Blanca Estuary (BBE), Los Pocitos (LP) and Puerto Madryn (PM). The MDs and MesDs samples were characterized by μ-FTIR, SEM/EDX and XRD. The abundance of MPs and APPs in sediments, range between 19.78 and 1087.19 and between 0 and 172.93 items/kg d.w., respectively. Despite variations in population and industrial developments in these areas, MPs abundance shows no significant differences in low and high intertidal zones. However, mean MPs concentrations were higher in the surface layer (0-5 cm) compared to the deeper sediments (5-10 cm), indicating recent MPs deposition. Chemical characterization evidenced the presence of cellulose (CE) and denser polymers as acrylonitrile butadiene styrene (ABS) and polyacrylics (PAN), APPs, metallic and black MDs. Surface degradation and heavy metals (Zn, Cr, and Ba) were also detected in APPs and other MDs, either as additives or adhered to their surfaces. Changes in crystallinity were also observed on the MesDs due to weathering. The calculated polymer hazard index (PHI) and the presence of hazardous polymers such as ABS and PAN indicated an increased risk of MPs pollution on the BBE and PM coasts. The pollution load index (PLI) values (from 4.63 to 5.34) suggested unpolluted to moderately polluted levels. These findings offer insights into potential risks associated with MDs in Argentine intertidal sediments, underscoring the critical need to comprehend the geomorphology and the influence of coastal dynamics. This is crucial for effectively addressing challenges linked to MDs pollution guiding the development of robust management and mitigation strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.169677DOI Listing

Publication Analysis

Top Keywords

marine microdebris
8
intertidal sediments
8
mds
7
mps
6
sediments
5
pollution
4
microdebris pollution
4
pollution sediments
4
sediments three
4
three environmental
4

Similar Publications

Bottom-Feeders Eat Their Fiber: Ingestion of Anthropogenic Microdebris by Antarctic Deep-Sea Invertebrates Depends on Feeding Ecology.

Environ Sci Technol

December 2024

Departamento de Oceanografia Biológica, Instituto Oceanográfico da Universidade de São Paulo (IO-USP), São Paulo 05508-120, Brazil.

Article Synopsis
  • Anthropogenic debris has been found in Antarctica for over 40 years, breaking down into microdebris that can reach the seafloor and be ingested by marine species.
  • Research analyzed benthic specimens from 1986 to 2016, discovering microdebris in the gut content of 13 out of 15 species studied, with particularly high ingestion rates in sea cucumbers and brittle stars.
  • The study identifies the first occurrence of microplastics in Southern Ocean deep-sea invertebrates, raising concerns about pollution even in remote, isolated regions like Antarctica.
View Article and Find Full Text PDF

Do Antarctic bivalves present microdebris? The case of Livingston Island.

Environ Pollut

June 2024

Department of Evolutionary Biology, Ecology and Environmental Sciences & Biodiversity Research Institute (IRBio), University of Barcelona, Av. Diagonal 643, Barcelona, 08028, Catalonia, Spain.

Article Synopsis
  • Marine microdebris (MD) have been found in bivalves across remote regions like Antarctica, with this study focusing on three common species in Johnsons' Bay.
  • The bivalves were found to contain an average of 0.71 items each, similar to other Antarctic studies, and nearly half of them contained at least one piece of MD.
  • This research is the first to compare MD presence in multiple bivalve species in the Antarctic Peninsula, highlighting local activities as a primary pollution source while emphasizing the need for conservation efforts.
View Article and Find Full Text PDF

Microplastics (MP) encompass not only plastic products but also paint particles. Marine microdebris, including MP, was retrieved from five sampling stations spanning Nagasaki-Goto island and was classified into six types, primarily consisting of MP (A), Si-based (B), and Cu-based (C) paint particles. Type-A particles, i.

View Article and Find Full Text PDF

Chemical analysis of marine microdebris pollution in macroalgae from the coastal areas of Argentina.

Sci Total Environ

May 2024

Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca B8000FWB, Buenos Aires, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000ICN Bahía Blanca, Argentina.

Marine microdebris (MDs, <5 mm) and mesodebris (MesDs, 5-25 mm), consist of various components, including microplastics (MPs), antifouling or anticorrosive paint particles (APPs), and metallic particles (Mmps), among others. The accumulation of these anthropogenic particles in macroalgae could have significant implications within coastal ecosystems because of the role of macroalgae as primary producers and their subsequent transfer within the trophic chain. Therefore, the objectives of this study were to determine the abundance of MDs and MesDs pollution in different species of macroalgae (P.

View Article and Find Full Text PDF

Anthropogenic debris in three sympatric seal species of the Western Antarctic Peninsula.

Sci Total Environ

April 2024

Laboratório de Ecologia e Conservação da Megafauna Marinha, Instituto de Oceanografia, Universidade Federal do Rio Grande-FURG, Av. Itália Km 8 s/n, Rio Grande, Brazil.

Litter pollution is a growing concern, including for Antarctica and the species that inhabit this ecosystem. In this study, we investigated the microplastic contamination in three seal species that inhabit the Western Antarctic Peninsula: crabeater (Lobodon carcinophaga), leopard (Hydrurga leptonyx) and Weddell (Leptonychotes weddellii) seals. Given the worldwide ubiquity of this type of contaminant, including the Southern Ocean, we hypothesized that the three seal species would present anthropogenic debris in their feces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!