Prefeasibility analysis of biomass gasification and electrolysis for hydrogen production.

Environ Res

Universidad Nacional de Colombia sede Manizales, Instituto de Biotecnología y Agroindustria, Laboratorio de Equilibrios Químicos y Cinética Enzimática, Departamento de Ingeniería Química, Km 07 vía al Magdalena, Manizales, Colombia. Electronic address:

Published: May 2024

AI Article Synopsis

Article Abstract

Hydrogen is a key energy vector to accomplishing energy transition and decarbonization goals proposed in the transport and industrial sectors worldwide. In recent years, research has focused on analyzing, designing, and optimizing hydrogen production, searching to improve economic prefeasibility with minimal emissions of polluting gases. Therefore, the techno-economic analysis of hydrogen production by electrolytic and gasification processes becomes relevant since these processes could compete commercially with industrial technologies such as SMR - Steam methane reforming. This work aims to analyze hydrogen production in stand-alone processes and energy-driven biorefineries. The gasification and electrolysis technologies were evaluated experimentally, and the yields obtained were input data for scaling up the processes through simulation tools. Biomass gasification is more cost-effective than electrolytic schemes since the hydrogen production costs were 4.57 USD/kg and 8.30 USD/kg at an annual production rate of 491.6 tons and 38.96 tons, respectively. Instead, the electrolysis process feasibility is strongly influenced by the recycled water rate and the electricity cost. A sensitivity analysis was performed to evaluate the temperature, pressure, and current density variability on the hydrogen production rate. The increase in pressure and current density induces parasitic currents while the temperature increases hydrogen production. Although higher hydrogen production rates from gasification, the syngas composition decreases the possibility of being implemented in applications where purity is critical.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2023.118003DOI Listing

Publication Analysis

Top Keywords

hydrogen production
32
hydrogen
9
production
9
biomass gasification
8
gasification electrolysis
8
production rate
8
pressure current
8
current density
8
gasification
5
prefeasibility analysis
4

Similar Publications

Production of free fatty acids by enzymatic hydrolysis of residual frying oil using non-commercial lipases from Aspergillus niger.

An Acad Bras Cienc

January 2025

Universidade Federal de Sergipe, Departamento de Engenharia Química - DEQ, Laboratório de Laboratório de Biotecnologia Ambiental (LABAM), Campus São Cristóvão, Rodovia Marechal Rondon, s/n, Rosa Elze, 49100-000 São Cristóvão, SE, Brazil.

Lipases are enzymes that have an important role in the industry for their wide use, giving rise to a great interest in industrial bioprocesses due to their versatility. One of the applications is the enzymatic hydrolysis of waste oils. This work consists of evaluating the production of lipases using several concentrations of residual frying oil (RFO) and different pHs, through ANOVA analysis.

View Article and Find Full Text PDF

Biosolids has several challenges, such as its high water content, huge volume, odour, and pathogen presence. Regulations require biosolids to be reused and disposed of safely. Polymer conditioning focuses on volume reduction, leaving pathogen and odour reduction unaddressed.

View Article and Find Full Text PDF

Heterogeneous catalysts have emerged as a potential key for closing the carbon cycle by converting carbon dioxide (CO) into value-added chemicals. In this work, we report a highly active and stable ceria (CeO)-based electronically tuned trimetallic catalyst for CO to CO conversion. A unique distribution of electron density between the defective ceria support and the trimetallic nanoparticles (of Ni, Cu, Zn) was established by creating the strong metal support interaction (SMSI) between them.

View Article and Find Full Text PDF

Cyclin-dependent kinases 4 and 6 (CDK4/6) are crucial regulators of cell cycle progression and represent important therapeutic targets in breast cancer. This study employs a comprehensive computational approach to identify novel CDK4/6 inhibitors from marine natural products. We utilized structure-based virtual screening of the CMNPD database and MNP library, followed by rigorous filtering based on drug-likeness criteria, PAINS filter, ADME properties, and toxicity profiles.

View Article and Find Full Text PDF

Rapid Synthesis of Carbon-Supported Ru-RuO₂ Heterostructures for Efficient Electrochemical Water Splitting.

Adv Sci (Weinh)

January 2025

Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California, 95064, USA.

Development of high-performance electrocatalysts for water splitting is crucial for a sustainable hydrogen economy. In this study, rapid heating of ruthenium(III) acetylacetonate by magnetic induction heating (MIH) leads to the one-step production of Ru-RuO₂/C nanocomposites composed of closely integrated Ru and RuO₂ nanoparticles. The formation of Mott-Schottky heterojunctions significantly enhances charge transfer across the Ru-RuO interface leading to remarkable electrocatalytic activities toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1 m KOH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!