Objective: In order to explore the pathogen of the ulcerative skin disease in giant spiny frog (Quasipaa spinosa), and to provide theoretical basis for the prevention and control of the disease in practical production, this study was carried out to isolate and identify the pathogenic bacteria from the sick frogs suffering from rotting skin disease and to carry out the immunization test of the inactivated vaccine.

Methods: Physiological and biochemical characterization, and molecular biology of the pathogenic bacteria were identified, and drug screening and immunization responses were also carried out.

Results: The dominant bacterium QS01 was isolated from the lesions of diseased giant spiny frogs, which was confirmed to be the causative agent of the rotting skin disease of giant spiny frogs by artificial regression infection test. Based on the fact that the pathogen is a gram-negative short bacterium, its phenotypic characteristics and 16S rRNA and gyrB gene sequences were analyzed, and the bacterium was determined to be Citrobacter freundii. The results of the drug sensitivity test showed that the bacterium was sensitive to 11 antibiotics, including Enrofloxacin, Fleroxacin and Ciprofloxacin, including three non-polluting drugs such as Florfenicol, Roxithromycin and Thiamphenicol, as well as three Chinese herbal medicines such as Rheum officinale Baill, Coptis chinensis Franch and Scutellaria baicalensis Georgi. Most non-specific immune responses could go to recovery in 24h. The frogs were vaccinated with QS01 formaldehyde inactivated vaccine by injection, immersion and spraying, and the serum antibody potency of the three immunized groups with the average potency reached the peak at the 20th d after immunization, and the serum antibody potency of the injected immunized group was at the highest ratio of 1:64-128 (101.6), while the immersed group and the spraying group attained the ratio of 1:16-32 (20.2) and 1:16-32 (16) respectively, and lasted until the 30th d. The control group that was not immunized had the highest serum antibody potency of 1:16-32 (20.2) and 1:16-32 (16), and continued until the 30th d. The control group that was not immunized was not immunized. The serum antibody potency of the unimmunized control group was 1:2 to 2(2). The immunoprotection rates after takedown were 100 %, 85.71 % and 71.43 %, respectively.

Conclusion: C. freundii is the pathogen of the disease in this farm, and the vaccination by immersion and spraying can effectively prevent and control the rotting skin disease in frogs. These results revealed pathogenicity of C. freundii and its activation of host immune response, which will provide a scientific reference for the aquaculture and disease prevention in Q. spinosa culture.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micpath.2023.106526DOI Listing

Publication Analysis

Top Keywords

skin disease
20
giant spiny
16
serum antibody
16
antibody potency
16
rotting skin
12
control group
12
pathogen ulcerative
8
ulcerative skin
8
disease
8
immune responses
8

Similar Publications

Analysis of circulating cell-free nuclear and mitochondrial DNA in plasma of Mexican patients with breast cancer.

Gac Med Mex

January 2025

División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara.

Background: The usefulness of circulating free DNA (cfDNA), nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) as potential biomarkers in cancer remains controversial.

Objective: To determine the concentration of cfDNA and plasma nDNA and mtDNA levels in breast cancer (BC) patients.

Material And Methods: This study included a total of 86 women (69 patients with BC and 17 women as a control group).

View Article and Find Full Text PDF

MTHFD2 promotes breast cancer cell proliferation through IFRD1 RNA m6A methylation-mediated HDAC3/p53/mTOR pathway.

Neoplasma

December 2024

Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.

MTHFD2 is highly overexpressed in breast cancer tissues, indicating that it might be used as a target in breast cancer treatment. This study aims to determine the role of MTHFD2 in breast cancer cell proliferation and the molecular pathways involved. In order to investigate MTHFD2 gene expression and its downstream pathways in breast cancer, we started our inquiry with a bioinformatics analysis.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast malignancy. Although some patients benefit from immune checkpoint therapy, current treatment methods rely mainly on chemotherapy. It is imperative to develop predictors of efficacy and identify individuals who will be sensitive to particular treatment regimens.

View Article and Find Full Text PDF

Background: The prompt and accurate identification of mild cognitive impairment (MCI) is crucial for preventing its progression into more severe neurodegenerative diseases. However, current diagnostic solutions, such as biomarkers and cognitive screening tests, prove costly, time-consuming, and invasive, hindering patient compliance and the accessibility of these tests. Therefore, exploring a more cost-effective, efficient, and noninvasive method to aid clinicians in detecting MCI is necessary.

View Article and Find Full Text PDF

Objectives: The aim of this study was the evaluation of a group of patients treated at the Department of Orthopaedics and Traumatology of Locomotory Apparatus at Luis Pasteur University Hospital in Košice for septic arthritis in relation to risk factors and chronic diseases and its microbial aetiologic profile.

Methods: We conducted a retrospective study of patients including all episodes of septic arthritis from March 2013 to August 2022. The occurrence of chronic diseases, risk factors and its microbiological profile were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!