The neurodevelopmental disorder, Attention Deficit Hyperactivity Disorder (ADHD), frequently affecting youngsters, is characterized by persistent patterns of inattention, hyperactivity, and impulsivity, the etiology of which may involve a variety of genetic, environmental, and neurological factors. Electroencephalography (EEG) measures the electrical activity in the brain through neuronal activity, which is a function of cognitive processes. In this study, a previously recorded sample set of 121 children containing unbiased data from both ADHD and control group classes and EEG signals were analyzed to classify the ADHD patients. The samples were tested under different cognitive conditions, and multiple features were extracted using Euclidean distance. Many machine learning algorithms use Euclidean distance as their default distance metric to compare two recorded data points. The extracted features were trained using four supervised machine learning algorithms (linear regression, random forest, extreme gradient boosting, and K nearest neighbor (KNN)) based on the results of various frequency bands. The results suggest that the KNN algorithm produces the highest accuracy over other machine learning approaches, and results can be further improved with the application of hyperparameter tuning and used for classifying sub-groups of ADHD to identify the severity of the disorder.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/21622965.2023.2300078 | DOI Listing |
BMC Pharmacol Toxicol
January 2025
Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, 264100, PR China.
Background: Alzheimer's disease (AD), a hallmark of age-related cognitive decline, is defined by its unique neuropathology. Metabolic dysregulation, particularly involving glutamine (Gln) metabolism, has emerged as a critical but underexplored aspect of AD pathophysiology, representing a significant gap in our current understanding of the disease.
Methods: To investigate the involvement of GlnMgs in AD, we conducted a comprehensive bioinformatic analysis.
BMC Med Inform Decis Mak
January 2025
Great Ormond Street Institute of Child Health, University College London, London, UK.
Introduction: Unsupervised feature learning methods inspired by natural language processing (NLP) models are capable of constructing patient-specific features from longitudinal Electronic Health Records (EHR).
Design: We applied document embedding algorithms to real-world paediatric intensive care (PICU) EHR data to extract patient-specific features from 1853 patients' PICU journeys using 647 unique lab tests and medication events. We evaluated the clinical utility of the patient features via a K-means clustering analysis.
World J Surg Oncol
January 2025
Department of Hepatobiliary and Pancreas, Affiliated Hospital of Qingdao University, NO.1677 Wutaishan Road, Qingdao, Shandong Province, 266555, China.
Background: With the rising diagnostic rate of gallbladder polypoid lesions (GPLs), differentiating benign cholesterol polyps from gallbladder adenomas with a higher preoperative malignancy risk is crucial. This study aimed to establish a preoperative prediction model capable of accurately distinguishing between gallbladder adenomas and cholesterol polyps using machine learning algorithms.
Materials And Methods: We retrospectively analysed the patients' clinical baseline data, serological indicators, and ultrasound imaging data.
BMC Cancer
January 2025
Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
Background: Neuroblastoma, a prevalent extracranial solid tumor in pediatric patients, demonstrates significant clinical heterogeneity, ranging from spontaneous regression to aggressive metastatic disease. Despite advances in treatment, high-risk neuroblastoma remains associated with poor survival. SLC1A5, a key glutamine transporter, plays a dual role in promoting tumor growth and immune modulation.
View Article and Find Full Text PDFBackground: Drivers of COVID-19 severity are multifactorial and include multidimensional and potentially interacting factors encompassing viral determinants and host-related factors (i.e., demographics, pre-existing conditions and/or genetics), thus complicating the prediction of clinical outcomes for different severe acute respiratory syndrome coronavirus (SARS-CoV-2) variants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!