Integrin subunit α3 (ITGA3) is a member of the integrin family and interacts with extracellular matrix proteins. However, there have been few reports regarding the role of ITGA3 in papillary thyroid cancer. The expression levels of ITGA3 were firstly analyzed by bioinformatics tools and experiments, followed by evaluating its prognostic significance in papillary thyroid cancer patients using Kaplan-Meier, receiver operating characteristic, and Cox regression analyses. Then, cBioportal and GSCA databases were applied to evaluate genetic alterations of ITGA3. Functional enrichment analysis was conducted and the upstream miRNAs of ITGA3 were determined. The results showed that the ITGA3 mRNA and protein levels were higher in the papillary thyroid cancer group than those in the normal group (all P < 0.05). Moreover, ITGA3 performed well in distinguishing the recurrence-free survival (RFS) status and served as an independent prognostic factor of papillary thyroid cancer patients (P < 0.01). Besides, significant relations between ITGA3 and genetic alterations were observed (FDR <0.01). Functional enrichment analysis indicated ECM-receptor interaction and cell adhesion molecules were the shared regulatory pathways. Moreover, ITGA3 might be the target gene of hsa-miR-3129, hsa-miR-181d, hsa-miR-181b, hsa-miR-199a, and hsa-miR-199b. Of note, the ITGA3 mRNA level was reduced after has-miR-199b-3p/5p was overexpressed. In conclusion, ITGA3 could be a reliable biomarker and have potential value in predicting the RFS status of papillary thyroid cancer patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10756987PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e23163DOI Listing

Publication Analysis

Top Keywords

papillary thyroid
16
thyroid cancer
16
integrin subunit
8
subunit α3
8
α3 itga3
8
itga3 papillary
8
itga3
7
expression prognosis
4
prognosis analysis
4
analysis integrin
4

Similar Publications

Nuclear pseudoinclusion is associated with BRAFV600E mutation: Analysis of nuclear features in papillary thyroid carcinoma.

Ann Diagn Pathol

January 2025

Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo Hospital, Jakarta 14320, Indonesia; Human Cancer Research Center-Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta 14320, Indonesia.

Papillary thyroid carcinoma (PTC) is the most prevalent thyroid neoplasm, classified into BRAF-like and RAS-like subtypes. Nuclear alterations serve as a diagnostic criterion of PTC and are fully manifested in BRAF-like. This single-center retrospective study aimed to assess the different presentation of nuclear features in 40 samples of BRAFV600E- and 40 samples of RAS-mutated PTCs using both bivariate and multivariate analytic approaches.

View Article and Find Full Text PDF

Background: Papillary Thyroid Carcinoma (PTC) is the most common thyroid cancer, with an etiology and progression that are not fully understood. Research suggests a link between cathepsins and PTC, but the causal nature of this link is unclear. This study uses Mendelian Randomization (MR) to investigate if cathepsins causally influence PTC risk.

View Article and Find Full Text PDF

The significance of ALKBH5 in erasing mRNA methylation in mRNA biogenesis, decay, and translation control has emerged as a prominent research focus. Additionally, ALKBH5 is associated with the development of numerous human cancers. However, it remains unclear whether ALKBH5 regulates the growth and metastasis of papillary thyroid carcinoma (PTC).

View Article and Find Full Text PDF

Research progress in deubiquitinase OTUD3.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

August 2024

School of Economics and Management, Beijing Forestry University, Beijing 100083, China.

OTU domain-containing protein 3 (OTUD3) is a crucial deubiquitinase that exhibits significant expression differences across various disease models. OTUD3 plays a role in regulating biological functions such as apoptosis, inflammatory responses, cell cycle, proliferation, and invasion in different cell types. By deubiquitinating key substrate proteins, OTUD3 is involved in essential physiological and pathological processes, including innate antiviral immunity, neural development, neurodegenerative diseases, and cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!