Robot learning based on implicitly extracted error detections (e.g., EEG-based error detections) has been well-investigated in human-robot interaction (HRI). In particular, the use of error-related potential (ErrP) evoked when recognizing errors is advantageous for robot learning when evaluation criteria cannot be explicitly defined, e.g., due to the complex behavior of robots. In most studies, erroneous behavior of robots were recognized visually. In some studies, visuo-tactile stimuli were used to evoke ErrPs or a tactile cue was used to indicate upcoming errors. To our knowledge, there are no studies in which ErrPs are evoked when recognizing errors only via the tactile channel. Hence, we investigated ErrPs evoked by tactile recognition of errors during HRI. In our scenario, subjects recognized errors caused by incorrect behavior of an orthosis during the execution of arm movements tactilely. EEG data from eight subjects was recorded. Subjects were asked to give a motor response to ensure error detection. Latency between the occurrence of errors and the response to errors was expected to be short. We assumed that the motor related brain activity is timely correlated with the ErrP and might be used from the classifier. To better interpret and test our results, we therefore tested ErrP detections in two additional scenarios, i.e., without motor response and with delayed motor response. In addition, we transferred three scenarios (motor response, no motor response, delayed motor response). Response times to error was short. However, high ErrP-classification performance was found for all subjects in case of motor response and no motor response condition. Further, ErrP classification performance was reduced for the transfer between motor response and delayed motor response, but not for the transfer between motor response and no motor response. We have shown that tactilely induced errors can be detected with high accuracy from brain activity. Our preliminary results suggest that also in tactile ErrPs the brain response is clear enough such that motor response is not relevant for classification. However, in future work, we will more systematically investigate tactile-based ErrP classification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10756909PMC
http://dx.doi.org/10.3389/fnbot.2023.1297990DOI Listing

Publication Analysis

Top Keywords

motor response
52
response
16
motor
14
response delayed
12
delayed motor
12
response motor
12
human-robot interaction
8
robot learning
8
error detections
8
evoked recognizing
8

Similar Publications

Speech production engages a distributed network of cortical and subcortical brain regions. The supplementary motor area (SMA) has long been thought to be a key hub in coordinating across these regions to initiate voluntary movements, including speech. We analyzed direct intracranial recordings from 115 patients with epilepsy as they articulated a single word in a subset of trials from a picture-naming task.

View Article and Find Full Text PDF

Overlapping and differential neuropharmacological mechanisms of stimulants and nonstimulants for attention-deficit/hyperactivity disorder: a comparative neuroimaging analysis.

Psychol Med

January 2025

Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.

Background: Psychostimulants and nonstimulants have partially overlapping pharmacological targets on attention-deficit/hyperactivity disorder (ADHD), but whether their neuroimaging underpinnings differ is elusive. We aimed to identify overlapping and medication-specific brain functional mechanisms of psychostimulants and nonstimulants on ADHD.

Methods: After a systematic literature search and database construction, the imputed maps of separate and pooled neuropharmacological mechanisms were meta-analyzed by Seed-based Mapping toolbox, followed by large-scale network analysis to uncover potential coactivation patterns and meta-regression analysis to examine the modulatory effects of age and sex.

View Article and Find Full Text PDF

Background: Studies on rest durations during high-intensity interval training (HIIT) often compare fixed and self-selected (SS) rest allocation approaches. Frequently, the rest duration under SS conditions is unlimited, leading to inconsistent total rest durations compared to fixed rest conditions. To address this limitation, we recently compared fixed and SS rest conditions during cycling HIIT sessions, while keeping the total rest duration equivalent.

View Article and Find Full Text PDF

Enhanced inflammatory and immune responses have been observed in patients with major depressive disorder, pointing to anti-inflammatory substances as potential seeds for developing novel antidepressants. Omega-3 polyunsaturated fatty acid metabolites, such as resolvin D and E series, maresins, and protectins (collectively known as specialized pro-resolving mediators) demonstrate anti-inflammatory effects. This study examined the antidepressant-like effects of maresin-1 (MaR1) on lipopolysaccharide (LPS)-induced depression-like behaviors in mice.

View Article and Find Full Text PDF

Does Body Postural Configuration Affect Upper Limb Performance During Point-to-Point Hand Movements?

J Mot Behav

January 2025

Department of Physical Therapy, Stanley Steyer School of Health Professions, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel.

Adopting a postural configuration may be regarded as preparation for the performance of an upcoming movement. However, it is unclear how different postural configurations affect motor performance. The aim of the current study was to examine how body posture - sitting versus standing - influences fast and accurate planar point-to-point hand movements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!