Peroxidase memetic nanozymes with their free radical-mediated catalytic actions proved as efficacious antibacterial agents for combating bacterial resistance. Herein, nanocellulose (NC) extracted from straw was used to prepare NC/FeO/Ag peroxidase nanozyme as an antibacterial and wound healing agent. Characterization of the nanozyme with XRD, FTIR, SEM-EDX, and XPS confirmed the presence of silver NPs and the magnetite phase of iron oxide dispersed on nanocellulose. The peroxidase activity of the prepared nanozyme was examined using TMB and HO as substrates which turned blue in acidic pH (λ = 652 nm). With a lower (0.387 mM), the nanozyme showed a comparable affinity for TMB with that reported for the HRP enzyme. Furthermore, the nanozyme remained efficient over a broader temperature range while maintaining 61.53% of its activity after the fourth cycle. In vitro, antibacterial tests against (Gram-negative) and (Gram-positive) bacterial strains showed that NC/FeO/Ag exhibits concentration-dependent and enhanced antibacterial effect for compared to NC and NC-FeO and negative control. Furthermore, the wound-healing performance of the NC-FeO-Ag nanozyme was investigated in vivo using an animal model (mice). The nanozyme showed 30% higher wound healing performance compared to the control base ointment and is comparable with the commercial nitrofurazone ointment. The results show the potential of the prepared nanozyme for wound-healing purposes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10753546 | PMC |
http://dx.doi.org/10.1021/acsomega.3c05748 | DOI Listing |
Med Sci Monit
January 2025
Department of Oral Implantology, The Affiliated Stomatology Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province Key Laboratory of Oral Biomedicine, Jiangxi Province Clinical Research Center for Oral Disease, Nanchang, Jiangxi, China.
BACKGROUND This study included 32 patients with single missing teeth and alveolar bone defects and aimed to compare outcomes from guided bone regeneration with a gelatin/polylactic acid (GT/PLA) barrier membrane and a Guidor® bioresorbable matrix barrier dental membrane. MATERIAL AND METHODS A total of 32 participants were recruited in the clinical study, with single missing teeth and alveolar bone defects, requiring guided bone regeneration (32 missing teeth in total). They were randomly divided into the GT/PLA membrane group (experimental) and Guidor® membrane group (control) by the envelope method (n=16).
View Article and Find Full Text PDFWorld J Urol
January 2025
Department of Urology, Peking University People's Hospital, Beijing, 100044, China.
Purpose: This study aims to elucidate the role of pituitary adenylate cyclase-activating polypeptide (PACAP) in Hunner-type Interstitial Cystitis (HIC) and evaluate its potential as a therapeutic target.
Methods: Bladder tissue samples were obtained from HIC patients and normal bladder tissue from bladder cancer patients. PACAP expression was assessed through immunohistochemistry.
BMJ Open
January 2025
Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
Introduction: Soft-tissue defect is commonly seen in immediate maxillary posterior implantation because of tooth extraction wound and tension from bone graft. Bone graft materials exposure has a significant detrimental influence on bone augmentation. However, previous studies lack sufficient evidence to guide wound closure after immediate posterior implantation.
View Article and Find Full Text PDFJ Voice
January 2025
Department of Otolaryngology - Head and Neck Surgery, University of Utah, Salt Lake City, UT; Department of Surgery, University Utah, Salt Lake City, UT.
Objectives/hypothesis: Vocal fold (VF) injury and chronic inflammation can progress to scarring, which is notoriously difficult to treat. Human amniotic fluid (AF) has potential for VF wound healing in a rabbit model, and we hypothesized that AF would demonstrate wound healing properties superior to hyaluronic acid (HA) over time.
Study Design: Randomized, controlled trial.
Int J Pharm
January 2025
College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China. Electronic address:
Traditional wound care preparations frequently face challenges such as complex care protocols, poor patient compliance, limited skin permeability, lack of aesthetics, and inconvenience, in addition to the risk of bacterial infection. We developed a spray film preparation containing nanocellulose and L-serine modified nanosilver, capable of rapidly forming a transparent film on the skin within minutes of application. The incorporation of nanocellulose imparted protective, moisturizing, and breathable properties to the film, allowing for easy removal after use.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!