This study delves into the intricate dynamics of the inflammatory response, unraveling the pivotal role played by cyclooxygenase (COX) enzymes, particularly COX-1 and COX-2 subtypes. Motivated by the pursuit of advancing scientific knowledge, our contribution to this field is marked by the design and synthesis of novel pyrrole derivatives. Crafted as potential inhibitors of COX-1 and COX-2 enzymes, our goal was to unearth molecules with heightened efficacy in modulating enzyme activity. A meticulous exploration of a synthesis library, housing around 3000 compounds, expedited the identification of potent candidates. Employing advanced docking studies and field-based Quantitative Structure-Activity Relationship (FB-QSAR) analyses enriched our understanding of the complex interactions between synthesized compounds and COX enzymes. Guided by FB-QSAR insights, our synthesis path led to the identification of compounds as potent COX-2 inhibitors, surpassing COX-1 efficacy. Conversely, compounds exhibited heightened inhibitory activity against COX-1 relative to COX-2. The utilization of pyrrole derivatives as COX enzyme inhibitors holds promise for groundbreaking advancements in the domain of anti-inflammatory therapeutics, presenting avenues for innovative pharmaceutical exploration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10753557PMC
http://dx.doi.org/10.1021/acsomega.3c06344DOI Listing

Publication Analysis

Top Keywords

pyrrole derivatives
12
cox-1 cox-2
12
cox-2 inhibitors
8
cox enzymes
8
cox-1
5
cox-2
5
design evaluation
4
evaluation synthesized
4
synthesized pyrrole
4
derivatives dual
4

Similar Publications

Application of Synthetic Microbial Communities of in Enhancing Wheat Salt Stress Tolerance.

Int J Mol Sci

January 2025

Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.

Soil salinization poses a significant challenge to global agriculture, particularly in arid and semi-arid regions like Xinjiang. , a halophytic plant adapted to saline-alkaline conditions, harbors endophytic microorganisms with potential plant growth-promoting properties. In this study, 177 endophytic bacterial strains were isolated from , and 11 key strains were identified through functional screening based on salt tolerance, nutrient solubilization, and growth-promoting traits.

View Article and Find Full Text PDF

Establishment of iPSC-Derived MSCs Expressing hsa-miR-4662a-5p for Enhanced Immune Modulation in Graft-Versus-Host Disease (GVHD).

Int J Mol Sci

January 2025

Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea.

The immune-modulatory effects of mesenchymal stromal cells (MSCs) are widely used to treat inflammatory disorders, with indoleamine 2,4-dioxygenase-1 (IDO-1) playing a pivotal role in suppressing stimulated T-cell proliferation. Taking that three-dimensional (3D) cultures enhance MSCs' anti-inflammatory properties compared with two-dimensional (2D) cultures, the differentially expressed miRNAs were examined. Thus, we identified hsa-miR-4662a-5p (miR-4662a) as a key inducer of IDO-1 via its suppression of bridging integrator-1 (BIN-1), a negative regulator of the IDO-1 gene.

View Article and Find Full Text PDF

Amoenucles A-F, novel nucleoside derivatives with TNF-α inhibitory activities from Aspergillus amoenus TJ507.

Chin J Nat Med

January 2025

Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China. Electronic address:

Amoenucles A-F (1-6), six previously undescribed nucleoside derivatives, and two known analogs (7 and 8) were isolated from the culture of Aspergillus amoenus TJ507. Their structures were elucidated through spectroscopic analysis, single-crystal X-ray crystallography, and chemical reactions. Notably, 3 and 4 represent the first reported instances of nucleosides with an attached pyrrole moiety.

View Article and Find Full Text PDF

Background: Current treatment strategies for hormone-dependent breast cancers, including adjuvant endocrine therapy, often fail due to persistence of breast cancer stem cells (brCSCs), which are significant contributors to tumor recurrence and treatment resistance. Therefore, gaining deeper insights into the molecular regulators driving breast cancer aggressiveness is important. Moreover, given the complexities and expenses involved in developing new pharmacological agents, the strategic repurposing of existing FDA-approved drugs to target these key molecular pathways presents a compelling approach for identifying novel therapeutic interventions aimed at mitigating tumor refractoriness.

View Article and Find Full Text PDF

Inhibiting Autophagy by Chemicals During SCAPs Osteodifferentiation Elicits Disorganized Mineralization, While the Knock-Out of Genes Leads to Cell Adaptation.

Cells

January 2025

The Laboratory for the Bioengineering of Tissues (BioTis U1026), National Institute of Health and Medical Research (INSERM), Université de Bordeaux, F-33000 Bordeaux, France.

SCAPs (Stem Cells from Apical Papilla), derived from the apex of forming wisdom teeth, extracted from teenagers for orthodontic reasons, belong to the MSCs (Mesenchymal Stromal Cells) family. They have multipotent differentiation capabilities and are a potentially powerful model for investigating strategies of clinical cell therapies. Since autophagy-a regulated self-eating process-was proposed to be essential in osteogenesis, we investigated its involvement in the SCAP model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!