Renewable Human Cell Model for Type 1 Diabetes Research: EndoC-H5/HUVEC Coculture Spheroids.

J Diabetes Res

Department of Biological and Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada H3A 0G4.

Published: January 2024

drug screening for type 1 diabetes therapies has largely been conducted on human organ donor islets for proof of efficacy. While native islets are the ultimate target of these drugs (either or for transplantation), significant benefit can be difficult to ascertain due to the highly heterogeneous nature of individual donors and the overall scarcity of human islets for research. We present an coculture model based on immortalized insulin-producing beta-cell lines with human endothelial cells in 3D spheroids that aims to recapitulate the islet morphology in an effort towards developing a standardized cell model for diabetes research. Human insulin-producing immortalized EndoC-H5 cells are cocultured with human endothelial cells in varying ratios to evaluate 3D cell culture models for type 1 diabetes research. Insulin secretion, metabolic activity, live cell fluorescence staining, and gene expression assays were used to compare the viability and functionality of spheroids composed of 100% beta-cells, 1 : 1 beta-cell/endothelial, and 1 : 3 beta-cell/endothelial. Monoculture and H5/HUVEC cocultures formed compact spheroids within 7 days, with average diameter ~140 m. This pilot study indicated that stimulated insulin release from 0 to 20 mM glucose increased from ~8-fold for monoculture and 1 : 1 coculture spheroids to over 20-fold for 1 : 3 EndoC-H5/HUVEC spheroids. Metabolic activity was also ~12% higher in the 1 : 3 EndoC-H5/HUVEC group compared to other groups. Stimulating monoculture beta-cell spheroids with 20 mM glucose +1 g/mL glycine-modified INGAP-P increased the insulin stimulation index ~2-fold compared to glucose alone. Considering their availability and consistent phenotype, EndoC-H5-based spheroids present a useful 3D cell model for in vitro testing and drug screening applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10757655PMC
http://dx.doi.org/10.1155/2023/6610007DOI Listing

Publication Analysis

Top Keywords

cell model
12
type diabetes
12
spheroids
8
coculture spheroids
8
drug screening
8
human endothelial
8
endothelial cells
8
metabolic activity
8
20 mm glucose
8
1  3 endoc-h5/huvec
8

Similar Publications

Regulation of T Cell Glycosylation by MXene/β-TCP Nanocomposite for Enhanced Mandibular Bone Regeneration.

Adv Healthc Mater

January 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Immune-mediated bone regeneration driven by bone biomaterials offers a therapeutic strategy for repairing bone defects. Among 2D nanomaterials, TiCT MXenes have garnered substantial attention for their potential in tissue regeneration. This investigation concentrates on the role of MXene nanocomposites in modulating the immune microenvironment within bone defects to facilitate bone tissue restoration.

View Article and Find Full Text PDF

In this paper, the pH-sensitive targeting functional material NGR-poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate (NGR-PEtOz-CHMC, NPC) modified quercetin (QUE) liposomes (NPC-QUE-L) was constructed. The structure of NPC was confirmed by infrared spectroscopy (IR) and nuclear magnetic resonance hydrogen spectrum (H-NMR). Pharmacokinetic results showed that the accumulation of QUE in plasma of the NPC-QUE-L group was 1.

View Article and Find Full Text PDF

Introduction: The purpose of this study was to evaluate the association between body composition, overall survival, odds of receiving treatment, and patient-reported outcomes (PROs) in individuals living with metastatic non-small-cell lung cancer (mNSCLC).

Methods: This retrospective analysis was conducted in newly diagnosed patients with mNSCLC who had computed-tomography (CT) scans and completed PRO questionnaires close to metastatic diagnosis date. Cox proportional hazard models and logistic regression evaluated overall survival and odds of receiving treatment, respectively.

View Article and Find Full Text PDF

Bergapten Ameliorates Renal Fibrosis by Inhibiting Ferroptosis.

Phytother Res

January 2025

Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.

Renal fibrosis is the most common pathway for the development of end-stage renal disease (ESRD) in various kidney diseases. Currently, the treatment options for renal fibrosis are limited. Ferroptosis is iron-mediated lipid peroxidation, triggered mainly by iron deposition and ROS generation.

View Article and Find Full Text PDF

Elevated LINC00115 expression correlates with aggressive endometrial cancer phenotypes via JAK/STAT pathway modulation.

Hum Mol Genet

January 2025

Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of CM, No. 19, Renmin Road, Jinshui District, Zhengzhou City, Henan Province, China.

This study systematically explores the oncogenic role of the long non-coding RNA (lncRNA) LINC00115 in endometrial cancer (EC) and reveals its unique mechanism in promoting proliferation, invasion, and metastasis via the JAK/STAT signaling pathway. LINC00115 is significantly upregulated in EC tissues and closely associated with advanced TNM staging and lymph node metastasis. Functional assays showed that knockdown of LINC00115 suppressed EC cell proliferation, invasion, and metastasis, while overexpression enhanced these malignant behaviors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!