Background and objective Preserving the vitality of the tooth is of prime significance during therapies such as direct pulp capping and pulpotomy that promote tertiary dentine formation and healing of pulp stumps. Procedures like apexogenesis and apexification also stimulate dentin and bone formation for root growth and closure. Conventional mineral trioxide aggregate (MTA) has good biocompatible and physical properties like longer setting time, presence of a cytotoxic component, i.e., tricalcium aluminate (TCA), moderate compressive strength, and moderate antimicrobial activity. Eliminating TCA and the addition of antibacterial components would improve the properties of the cement. In this study, we aimed to assess the cytotoxicity of MTA Angelus, Biodentine, and two antibacterial-enhanced MTAs by using methyl-thiazoldiphenyl-tetrazolium (MTT) assay. Materials and methods Human dental pulp was extirpated from extracted third molars, and human dental pulp stem cells (HDPSCs) were isolated and characterized by flow cytometry. HDPSCs were treated with MTA, Biodentine, or two antibacterial-enhanced MTAs depending on the study group. The control group constituted the untreated HDPSCs. The cell viability of HDPSCs was assessed using an MTT assay on days one, three, and seven. Results Varied levels of cytotoxicity were noticed at different time periods assessed using the tested materials, which was statistically significant (p=0.01). At all time periods assessed, the highest cell viability was noticed with Biodentine (88.7% on the first day, 80.4% on the third day, and 91.8% on the seventh day). Antibacterial-enhanced MTAs, either added with metronidazole or doxycycline, had more mean viable cells compared to conventional MTA on the third and seventh day (p=0.043 and 0.018 respectively). Conclusion Antibacterial-enhanced MTAs showed reduced cytotoxic properties when compared to conventional MTA. Biodentine was associated with the highest cell viability at all time periods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10757110 | PMC |
http://dx.doi.org/10.7759/cureus.49691 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!