With the continuous rise of environmental pollution and energy crisis, the global energy revolution is risen. Development of renewable blue energy based on the emerging promising triboelectric nanogenerators (TENG) has become an important direction of future energy development. The solid-liquid contact triboelectric nanogenerator (TENG) has the advantages of flexible structure, easy manufacture, and long-term stability, which makes it easier to integrate and achieve large-scale conversion of wave mechanical energy. However, the electric power output is still not large enough, which limits its practical applications. In this work, a nanocomposite electret layer enhanced solid-liquid contact triboelectric nanogenerator (E-TENG) is proposed for water wave energy harvesting, which can effectively improve the electric output and achieve real-time power supply of wireless sensing. Through introducing a nanocomposite electret layer into flexible multilayer solid-liquid contact TENG, higher power output is achieved. The E-TENG (active size of 50 mm × 49 mm) shows desired output performance, a power density of 521 mW m. The generated electric energy can drive wireless temperature sensing by transmitting wireless signals carrying detection information at the period of ˂5.5 min. This research greatly improves the electric output and provides a solid basis for the industrialization of TENG in blue energy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202310023DOI Listing

Publication Analysis

Top Keywords

solid-liquid contact
16
nanocomposite electret
12
electret layer
12
contact triboelectric
12
triboelectric nanogenerator
12
energy
9
water wave
8
wave energy
8
energy harvesting
8
blue energy
8

Similar Publications

Effective removal of rhodamine B dyestuff using colemanite as an adsorbent: Isotherm, kinetic, thermodynamic analysis and mechanism.

Heliyon

January 2025

Alanya Alaaddin Keykubat University, Rafet Kayis Engineering Faculty, Department of Engineering Basic Science, 07450, Alanya, Antalya, Turkiye.

Removal of Rhodamine B (RhB) from aqueous solutions was performed by the batch adsorption process. Colemanite was characterized as an adsorbent by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF). The effects of contact time, the effect of the initial concentration of the dye, the amount of adsorbent and temperature parameters on the removal of RhB were investigated.

View Article and Find Full Text PDF

The decoupling of electronic states between metals and semiconductors through controlled construction of artificial van der Waals (vdW) heterojunctions enables tailored Schottky barriers. However, the interfacial chemistry, especially involving solid-liquid interfaces, remains unexplored. Here, first principles calculations reveal unexpected strong Fermi-level pinning in various metal/MoS vdW heterojunctions with intercalated ice-like water bilayers.

View Article and Find Full Text PDF

Triboelectric nanogenerators (TENGs), among the most simple and efficient means to harvest mechanical energy, have great potential in renewable energy utilization. While the output performance of TENGs is still not high enough, which limits its practical application. Here, a poly(vinylidene fluoride) (PVDF)/fluorinated ethylene propylene nanoparticles (FEP NPs) porous nanofiber (PFPN) membrane with waterproof, breathable, surface superhydrophobic and high tribo-negative properties is proposed for achieving high-performance of TENGs.

View Article and Find Full Text PDF

Determination of solid-liquid adhesion work on flat surfaces in a direct and absolute manner.

Sci Rep

December 2024

Institute of Technical Physics and materials Science, HUN-REN Centre for Energy Research, P.O. Box 49, 1525, Budapest, Hungary.

There is a long-standing need for a direct determination of solid-liquid work of adhesion due to its central role in several scientific and industrial fields. Here, a method is introduced to determine the value of adhesion work on flat surfaces directly, without the need of any model assumptions, and independently from uncertainties of contact angles. The presented method enables to determine the adhesion work separately both for advancing and receding situations.

View Article and Find Full Text PDF

Wire Electrochemical Machining of Multiscale Superhydrophobic Arrays with Specific Unit Shapes on Stainless Steel.

Langmuir

December 2024

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China.

The multiscale superhydrophobic array with a specific unit shape has a broader prospect for application in engineering materials, such as stainless steel (SS). However, the fabrication of the multiscale superhydrophobic array with a specific unit shape remains limited by several aspects, mainly including the complexity and controllability of multiscale integration of microstructures and arrays, the difficulties in obtaining specific unit shapes, and the low safety. Therefore, there is an urgent need for a relatively controllable, simple, and safe method to achieve a multiscale superhydrophobic array with a specific unit shape.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!