Mild magnetic hyperthermia therapy (MMHT) holds great potential in treating deep-seated tumors, but its efficacy is impaired by the upregulation of heat shock proteins (HSPs) during the treatment process. Herein, Lac-FcMOF, a lactose derivative (Lac-NH ) modified paramagnetic metal-organic framework (FcMOF) with magnetic hyperthermia property and thermal stability, has been developed to enhance MMHT therapeutic efficacy. In vitro studies showed that Lac-FcMOF aggravates two-way regulated redox dyshomeostasis (RDH) via magnetothermal-accelerated ferricenium ions-mediated consumption of glutathione and ferrocene-catalyzed generation of ∙OH to induce oxidative damage and inhibit heat shock protein 70 (HSP70) synthesis, thus significantly enhancing the anti-cancer efficacy of MMHT. Aggravated RDH promotes glutathione peroxidase 4 inactivation and lipid peroxidation to promote ferroptosis, which further synergizes with MMHT. H22-tumor-bearing mice treated with Lac-FcMOF under alternating magnetic field (AMF) demonstrated a 90.4% inhibition of tumor growth. This work therefore provides a new strategy for the simple construction of a magnetic hyperthermia agent that enables efficient MMHT by downregulating HSPs and promoting ferroptosis through the aggravation of two-way regulated RDH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10953551PMC
http://dx.doi.org/10.1002/advs.202306178DOI Listing

Publication Analysis

Top Keywords

magnetic hyperthermia
16
heat shock
12
two-way regulated
12
paramagnetic metal-organic
8
metal-organic framework
8
mild magnetic
8
hyperthermia therapy
8
shock proteins
8
promoting ferroptosis
8
ferroptosis aggravation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!