Enzymes are being increasingly exploited for their potential as industrial biocatalysts. Establishing a portfolio of useful biocatalysts from large and diverse protein family is challenging and a systematic method for candidate selection promises to aid in this task. Moreover, accurate enzyme functional annotation can only be confidently guaranteed through experimental characterisation in the laboratory. The selection of catalytically diverse enzyme panels for experimental characterisation is also an important step for shedding light on the currently unannotated proteins in enzyme families. Current selection methods often lack efficiency and scalability, and are usually non-systematic. We present a novel algorithm for the automatic selection of subsets from enzyme families. A tabu search algorithm solving the maximum diversity problem for sequence identity was designed and implemented, and applied to three diverse enzyme families. We show that this approach automatically selects panels of enzymes that contain high richness and relative abundance of the known catalytic functions, and outperforms other methods such as k-medoids.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biosystems.2023.105105DOI Listing

Publication Analysis

Top Keywords

enzyme families
12
solving maximum
8
maximum diversity
8
diversity problem
8
experimental characterisation
8
diverse enzyme
8
enzyme
6
selection
5
method systematic
4
systematic selection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!