Co-pyrolysis of sewage sludge and biomass waste into biofuels and biochar: A comprehensive feasibility study using a circular economy approach.

Chemosphere

Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada. Electronic address:

Published: February 2024

AI Article Synopsis

  • Huge amounts of sewage sludge are a problem because they can pollute the environment and produce greenhouse gases.
  • The study looked at mixing sewage sludge with other plant waste to create biofuels and biochar, which could be profitable.
  • They found that co-pyrolyzing with sawdust gave the best results, making it a better way to handle sludge than the usual methods.

Article Abstract

Enormous annual sewage sludge (SS) volumes pose global environmental challenges owing to contamination and significant greenhouse gas emissions. Here, we investigated the economic viability of co-pyrolyzing SS and biomass waste to produce biofuels (bio-oil and gas) and biochar. Net present worth (NPW) analysis, the sale product break-even price, and sludge handling price (SHP) were used to determine the profitability of co-pyrolysis compared with SS pyrolysis alone and conventional treatment methods. In this study, the sale prices of biochar based on quality (i.e., stability, carbon sequestration effectiveness, and heavy metal content) were estimated to be 2.24, 1.44, and 0.98 CAD/kg for high-, medium-, and low-grade biochar. The bio-oil prices, estimated based on the higher heating values of bio-oil and diesel, ranged from 0.80 to 1.22 CAD/kg. Sawdust (SD) and wheat straw (WS) were the chosen co-pyrolysis feedstocks, with four mixing ratios (20, 40, 60, and 80 wt%). Economically, SD (40 wt% mixing ratio) co-pyrolysis achieved the best performance, with a maximum NPW of 8.71 million CAD. SD single and co-pyrolysis were the only profitable scenarios. Moreover, SS single pyrolysis and WS co-pyrolysis exhibited higher profitability than conventional SS treatment methods, with SHPs of 65 and 40 CAD/1000 kg dry sludge, respectively. Sensitivity analysis highlighted the dependence of economic performance on biochar and bio-oil market value. This study offers the first economic analysis of this approach and enhances our understanding of the potential of co-pyrolysis for biofuel and biochar production, providing innovative solutions for the environmental challenges of SS disposal.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.141074DOI Listing

Publication Analysis

Top Keywords

sewage sludge
8
biomass waste
8
environmental challenges
8
conventional treatment
8
treatment methods
8
biochar bio-oil
8
co-pyrolysis
7
biochar
6
co-pyrolysis sewage
4
sludge
4

Similar Publications

"Sichuanvirus", a novel bacteriophage viral genus, able to lyse carbapenem-resistant Klebsiella pneumoniae.

BMC Microbiol

January 2025

Center of Infectious Diseases, West China Hospital, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China.

Background: Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a severe threat for human health and urgently needs new therapeutic approaches. Lytic bacteriophages (phages) are promising clinically viable therapeutic options against CRKP. We attempted to isolate lytic phages against CRKP of sequence type 11 and capsular type 64 (ST11-KL64), the predominant type in China.

View Article and Find Full Text PDF

Disinfection is a critical process to ensure the safety of drinking water. To curb the spread of various bacteria and viruses, disinfectants are extensively employed in communities, hospitals, sewage treatment plants, and other settings. However, disinfectants can produce disinfection by-products (DBPs) that threaten human health.

View Article and Find Full Text PDF

Utilization of wall-breaking sludge for improving soil structure in abandoned mine land.

Environ Res

January 2025

College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Promoting soil structure is considered an essential prerequisite for abandoned mine land restoration. Sewage sludge (SS) has the potential to improve soil structure. However, traditional SS application to improve soil structure requires a lot of SS, potentially exacerbating heavy metal (HM) contamination.

View Article and Find Full Text PDF

Impact of grazing by multiple Daphnia species on wastewater bacterial communities.

Sci Total Environ

January 2025

Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, QC H3C 3A7, Canada. Electronic address:

Understanding the dynamics of fecal bacterial communities is crucial for managing public health risks and protecting drinking water resources. While extensive research exists on how abiotic factors influence the survival of fecal microbial communities in water, less attention has been paid to the impact of predation by higher organisms, such as the widely distributed grazer Daphnia. Nevertheless, Daphnia plays a significant role in regulating bacterial communities in natural aquatic ecosystems, and recent studies highlighted its potential as a biofilter in alternative tertiary wastewater treatment systems.

View Article and Find Full Text PDF

The expansion of urban settlements over native environments may expose biodiversity to a host of emerging contaminants, with unintended ecological effects. This study evaluated patterns of contamination of streamwater by antidepressants in the Upper Tietê River Basin, a watershed of high social, economic and environmental relevance for comprising both the largest urban settlement in South America (the Metropolitan Region of São Paulo) and remnants of a globally important biodiversity hotspot (the Atlantic Rainforest). We sampled 53 third-order streams draining catchments regularly distributed across a gradient in urban cover.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!