In this study, the magnesium oxide (MgO)-based adsorbents [granulated MgO aggregates (GA-MgO) and surface-modified MgO powder (SM-MgO)] were developed to remediate a fluoride-contaminated groundwater site. Both GA-MgO and SM-MgO had porous, spherical, and crystalline structures. Diameters for GA-MgO and SM-MgO were 1-1.7 mm and 1-10 μm, respectively. The pseudo second-order dynamic adsorption and the Freundlich isotherm could be applied to express the chemical adsorption phenomena. The monolayer adsorption was the dominant mechanism at the initial adsorption period. During the latter part of fluoride adsorption, the multilayer adsorption became the dominant mechanism for fluoride removal from the water phase, which also resulted in the increased adsorption capacity. Higher hydroxide, phosphate, and carbonate concentrations caused a decreased fluoride removal efficiency due to the competition of sorption sites between fluoride and other anions with similar electronic properties. Fluoride removal mechanism using GA-MgO and SM-MgO as the adsorbents was mainly carried out by the chemical adsorption. Reaction paths contained two main processes: (1) formation of magnesium hydroxide after the reaction of MgO with water, and (2) the hydroxyl group of the magnesium hydroxide was replaced by fluoride ions to form magnesium fluoride precipitation. Results from column tests show that up to 61 and 73% of fluoride removal (initial fluoride concentration = 9.3 mg/L) could be obtained after 50 pore volumes of groundwater pumping with GA-MgO and SM-MgO injection, respectively. The GA-MgO system could be applied to contain and remediate fluoride-contaminated groundwater, and SM-MgO could be applied as an immediate fluoride removal alternative to achieve a rapid pollutant removal for emergency responses. Up to 71% of fluoride removal (fluoride concentration = 10.8 mg/L) could be obtained with GA-MgO injection after 30 days of operation. The developed GA-MgO system is a potential and green remediation alternative to contain the fluoride plume significantly.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.141035 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Physics, National Institute of Technology Nagaland, Chumukedima, Dimapur 797103, India.
An exceedingly porous and interwoven fibrous structure was achieved in this study by interlocking titanium carbide (TiC) MXenes onto the electrospun mats using poly(vinylidene fluoride) (PVDF) as the base polymer. The fibrous membrane was further modified with the inclusion of zinc oxide (ZnO) and tungstite (WO·HO) nano/microstructures via annealing and hydrothermal approaches. Through these strategic interfaced morphological developments in novel TiC/ZnO/WO·HO heterostructures, our findings reveal enhanced wettability and charge-segregation desirable for promoting oil-water separation and photoreactivity, respectively.
View Article and Find Full Text PDFActa Crystallogr C Struct Chem
February 2025
Department Chemie, Ludwig-Maximilians Universität, Butenandtstrasse 5-13 (Haus D), D-81377 München, Germany.
The monoprotonated species of 2-aminomalonyl difluoride, namely, 1,3-difluoro-1,3-dioxopropan-2-aminium dihydrogen trifluoride, [CHFNO][HF], was synthesized from sulfur tetrafluoride in anhydrous hydrogen fluoride (aHF) with [NH][CHNO] as the starting material. The solvent was removed and the salt was dissolved in aHF and crystallized. In the solid state, the three-dimensional network is built by medium-strong N-H.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESP), Beijing, China; Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing, China; Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China. Electronic address:
Widespread detection in soils and sediments underscores the potential threats posed by persistent, bioaccumulative and toxic perfluorooctane sulfonate (PFOS) to ecosystems and organisms. Nevertheless, the formidable energy of the C-F bond imparts stability and hampers degradation. This study investigates the potential of boron carbide (BC), a hard-ceramic material often utilized in armor and abrasion contexts, for degrading solid-phase PFOS through ball milling.
View Article and Find Full Text PDFRSC Adv
January 2025
Faculty of Chemical Engineering, Kunming University of Science and Technology Kunming 650500 P. R. China
Polysilicate-ferric-calcium-lanthanum (PSFCL) was synthesized through a co-polymerization method in order to treat the yellow phosphorus wastewater. Its morphology, composition and functional group were analyzed by X-ray Diffraction (XRD), Fourier Transform-Infrared Spectroscopy (FTIR), Scanning Electron Microscopic (SEM) and X-ray Photoelectron Spectroscopy (XPS), respectively. The optimization of the flocculant was also investigated, including La/Si molar ratio, pH, agitation time, dosage and sedimentation time.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!