In the present work, parallel reaction monitoring (PRM) and data-independent acquisition (DIA) methods were developed for the accurate quantitation of amino acids, alkaloids nucleosides and nucleotides in tea. The quality peaks were significantly enhanced by optimizing the LC elution procedure, HCD voltage, MS resolution, and scanning event. Both methods were validated with good liner linearity (0.004-200 μg/mL), LODs (0.001-0.309 μg/mL for PRM and 0.001-0.564 μg/mL for DIA). Applied to white tea sample, the contents of these hydrophilic compounds were range from 34,655.39 to 70,586.14 mg/kg, and caffeine (32,529.02 mg/kg) and theanine (5483.46 mg/kg) were determined as the most abundant ones. Based on the quantitation data set, the white tea samples from Puer, Lincang and Xishuangbanna were clearly discriminated using multivariate data analysis. The results of the present works show that PRM and DIA have great potential in quantitative analysis of multiple hydrophilic compounds in food samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2023.464601DOI Listing

Publication Analysis

Top Keywords

hydrophilic compounds
12
white tea
12
parallel reaction
8
reaction monitoring
8
data-independent acquisition
8
quantitative analysis
8
development comparison
4
comparison parallel
4
monitoring data-independent
4
acquisition methods
4

Similar Publications

Aminoglycoside/Hexadecanoic Acid Complex Lamellar Core Nanoparticles.

ACS Omega

December 2024

Department of Clinical Medicine, Macquarie University, Sydney, NSW 2109, Australia.

An aminoglycoside, tobramycin sulfate (TbS), was complexed with hexadecanoic acid (HdA), resulting in a TbS/HdA complex with a repeat unit of 5.3 nm of a lamellar nanostructure. The nanometer-sized TbS/HdA particles were produced using poloxamer 188 as a dispersing agent.

View Article and Find Full Text PDF

is one of the opportunistic pathogens that may cause serious health problems and can produce several virulence factors, which are responsible for various infections, particularly in immunocompromised patients. They are responsible for producing infections on indwelling medical devices by attaching on to them and forming a biofilm. Antibiofilm, antivirulence, and gene expression studies of biofilm treated with esters of flavonols were evaluated.

View Article and Find Full Text PDF

Anionic polysaccharides as delivery carriers for cancer therapy and theranostics: An overview of significance.

Int J Biol Macromol

December 2024

Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan. Electronic address:

Recently, cancer therapy has witnessed remarkable advancements with a growing focus on precision medicine and targeted drug delivery strategies. The application of anionic polysaccharides has gained traction in various drug delivery systems. Anionic polysaccharides have emerged as promising delivery carriers in cancer therapy and theranostics, offering numerous advantages such as biocompatibility, low toxicity, and the ability to encapsulate and deliver therapeutic agents to tumor sites with high specificity.

View Article and Find Full Text PDF

Potential Unlocking of Biological Activity of Caffeic Acid by Incorporation into Hydrophilic Gels.

Gels

December 2024

Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania.

Caffeic acid, a phenolic compound with antioxidant and antimicrobial properties, shows promise in the dermatological field. The research aimed to incorporate caffeic acid into hydrophilic gels based on poloxamer 407, carbomer 980, and their mixture in order to enhance its biological activity. Different gel formulations were prepared using different concentrations of these polymers to optimize caffeic acid release characteristics.

View Article and Find Full Text PDF

With no effective treatments for functional recovery after injury, spinal cord injury (SCI) remains one of the unresolved healthcare challenges. Human induced pluripotent stem cell (hiPSC) transplantation is a versatile patient-specific regenerative approach for functional recovery after SCI. Injectable electroconductive hydrogel (ECH) can further enhance the cell transplantation efficacy through a minimally invasive manner as well as recapitulate the native bioelectrical microenvironment of neural tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!