The concept of a digital twin came from the engineering, industrial, and manufacturing domains to create virtual objects or machines that could inform the design and development of real objects. This idea is appealing for precision medicine where digital twins of patients could help inform healthcare decisions. We have developed a methodology for generating and using digital twins for clinical outcome prediction. We introduce a new approach that combines synthetic data and network science to create digital twins (i.e. SynTwin) for precision medicine. First, our approach starts by estimating the distance between all subjects based on their available features. Second, the distances are used to construct a network with subjects as nodes and edges defining distance less than the percolation threshold. Third, communities or cliques of subjects are defined. Fourth, a large population of synthetic patients are generated using a synthetic data generation algorithm that models the correlation structure of the data to generate new patients. Fifth, digital twins are selected from the synthetic patient population that are within a given distance defining a subject community in the network. Finally, we compare and contrast community-based prediction of clinical endpoints using real subjects, digital twins, or both within and outside of the community. Key to this approach are the digital twins defined using patient similarity that represent hypothetical unobserved patients with patterns similar to nearby real patients as defined by network distance and community structure. We apply our SynTwin approach to predicting mortality in a population-based cancer registry (n=87,674) from the Surveillance, Epidemiology, and End Results (SEER) program from the National Cancer Institute (USA). Our results demonstrate that nearest network neighbor prediction of mortality in this study is significantly improved with digital twins (AUROC=0.864, 95% CI=0.857-0.872) over just using real data alone (AUROC=0.791, 95% CI=0.781-0.800). These results suggest a network-based digital twin strategy using synthetic patients may add value to precision medicine efforts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10827004PMC

Publication Analysis

Top Keywords

digital twins
32
synthetic patients
12
precision medicine
12
digital
10
approach predicting
8
twins
8
digital twin
8
synthetic data
8
patients
7
synthetic
6

Similar Publications

An ODE-based swift and dynamic sewer airflow model.

Water Res

December 2024

School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China. Electronic address:

Airflow models are powerful tools for ventilation design to achieve odour and corrosion mitigation in sewer networks. Currently, there lacks a model able to efficiently predict in-sewer dynamic airflows, as all available dynamic models with an acceptable accuracy are computationally demanding. In this study, a swift dynamic airflow model based on an ordinary differential equation (ODE) is derived by simplifying the one-dimensional Navier Stokes Equations (NSE), supported by the observation that the NSE solutions always display negligible spatial variations in air velocity when applied to a sewer conduit.

View Article and Find Full Text PDF

Digital twins, driven by data and mathematical modelling, have emerged as powerful tools for simulating complex biological systems. In this work, we focus on modelling the clearance on a liver-on-chip as a digital twin that closely mimics the clearance functionality of the human liver. Our approach involves the creation of a compartmental physiological model of the liver using ordinary differential equations (ODEs) to estimate pharmacokinetic (PK) parameters related to on-chip liver clearance.

View Article and Find Full Text PDF

Predecting power transformer health index and life expectation based on digital twins and multitask LSTM-GRU model.

Sci Rep

January 2025

Department of Embedded Network Systems and Technology, Faculty of Artificial Intelligence, Kafrelsheikh University, El-Geish St, Kafrelsheikh, 33516, Egypt.

Power transformers play a crucial role in enabling the integration of renewable energy sources and improving the overall efficiency and reliability of smart grid systems. They facilitate the conversion, transmission, and distribution of power from various sources and help to balance the load between different parts of the grid. The Transformer Health Index (THI) is one of the most important indicators of ensuring their reliability and preventing unplanned outages.

View Article and Find Full Text PDF

Digital Twins for Clinical and Operational Decision-Making: Scoping Review.

J Med Internet Res

January 2025

Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia.

Background: The health care industry must align with new digital technologies to respond to existing and new challenges. Digital twins (DTs) are an emerging technology for digital transformation and applied intelligence that is rapidly attracting attention. DTs are virtual representations of products, systems, or processes that interact bidirectionally in real time with their actual counterparts.

View Article and Find Full Text PDF

A comprehensive review of digital twin in healthcare in the scope of simulative health-monitoring.

Digit Health

January 2025

Faculty IV: School of Science and Technology, Institute for Knowledge-Based Systems and Knowledge Management, University of Siegen, Siegen, Germany.

Objective: Digital twins (DTs) emerged in the wake of Industry 4.0 and the creation of cyber-physical systems, motivated by the increased availability and variability of machine and sensor data. DTs are a concept to create a digital representation of a physical entity and imitate its behavior, while feeding real-world data to the digital counterpart, thus allowing enabling digital simulations related to the real-world entity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!