A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MaTiLDA: An Integrated Machine Learning and Topological Data Analysis Platform for Brain Network Dynamics. | LitMetric

Topological data analysis (TDA) combined with machine learning (ML) algorithms is a powerful approach for investigating complex brain interaction patterns in neurological disorders such as epilepsy. However, the use of ML algorithms and TDA for analysis of aberrant brain interactions requires substantial domain knowledge in computing as well as pure mathematics. To lower the threshold for clinical and computational neuroscience researchers to effectively use ML algorithms together with TDA to study neurological disorders, we introduce an integrated web platform called MaTiLDA. MaTiLDA is the first tool that enables users to intuitively use TDA methods together with ML models to characterize interaction patterns derived from neurophysiological signal data such as electroencephalogram (EEG) recorded during routine clinical practice. MaTiLDA features support for TDA methods, such as persistent homology, that enable classification of signal data using ML models to provide insights into complex brain interaction patterns in neurological disorders. We demonstrate the practical use of MaTiLDA by analyzing high-resolution intracranial EEG from refractory epilepsy patients to characterize the distinct phases of seizure propagation to different brain regions. The MaTiLDA platform is available at: https://bmhinformatics.case.edu/nicworkflow/MaTiLDA.

Download full-text PDF

Source

Publication Analysis

Top Keywords

interaction patterns
12
neurological disorders
12
machine learning
8
topological data
8
data analysis
8
complex brain
8
brain interaction
8
patterns neurological
8
algorithms tda
8
tda methods
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!