This review describes the major experimental challenges researchers meet when attempting to couple phase separation between membranes and condensates. Although it is well known that phase separation in a 2D membrane could affect molecules capable of forming a 3D condensate (and vice versa), few researchers have quantified the effects to date. The scarcity of these measurements is not due to a lack of intense interest or effort in the field. Rather, it reflects significant experimental challenges in manipulating coupled membranes and condensates to yield quantitative values. These challenges transcend many molecular details, which means they impact a wide range of systems. This review highlights recent exciting successes in the field, and it lays out a comprehensive list of tools that address potential pitfalls for researchers who are considering coupling membranes with condensates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11163299PMC
http://dx.doi.org/10.1016/j.bpj.2023.12.023DOI Listing

Publication Analysis

Top Keywords

membranes condensates
12
experimental challenges
8
phase separation
8
coupling liquid
4
liquid phases
4
condensates
4
phases condensates
4
condensates 2d membranes
4
2d membranes successes
4
challenges
4

Similar Publications

Cationic Cyclodextrin-Based Carriers for Drug and Nucleic Acid Delivery.

Pharmaceutics

January 2025

Integrative Health and Environmental Analysis Research Laboratory, Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary.

Cyclodextrins can serve as carriers for various payloads, utilizing their capacity to form unique host-guest inclusion complexes within their cavity and their versatile surface functionalization. Recently, cationic cyclodextrins have gained considerable attention, as they can improve drug permeability across negatively charged cell membranes and efficiently condense negatively charged nucleic acid due to electrostatic interactions. This review focuses on state-of-the-art and recent advances in the construction of cationic cyclodextrin-based delivery systems.

View Article and Find Full Text PDF

Phase separation of specific proteins into liquid-like condensates is a key mechanism for forming membrane-less organelles, which organize diverse cellular processes in space and time. These protein condensates hold immense potential as biomaterials capable of containing specific sets of biomolecules with high densities and dynamic liquid properties. Despite their appeal, methods to manipulate protein condensate materials remain largely unexplored.

View Article and Find Full Text PDF

Mechanisms of RCD-1 pore formation and membrane bending.

Nat Commun

January 2025

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, PR China.

Regulator of cell death-1 (RCD-1) governs the heteroallelic expression of RCD-1-1 and RCD-1-2, a pair of fungal gasdermin (GSDM)-like proteins, which prevent cytoplasmic mixing during allorecognition and safeguard against mycoparasitism, genome exploitation, and deleterious cytoplasmic elements (e.g., senescence plasmids) by effecting a form of cytolytic cell death.

View Article and Find Full Text PDF

The absorption refrigeration system (ARS) stands as a remarkable device that is capable of efficiently harnessing low-grade thermal energy and converting it into cooling capacity. The reverse electrodialysis (RED) system harvests the salinity gradient energy embedded in two solutions of different concentrations into electricity. An innovative RED-ARS integration system is proposed that outputs cooling capacity and electric energy, driven by waste heat.

View Article and Find Full Text PDF

The assembly of proteins in membranes plays a key role in many crucial cellular pathways. Despite their importance, characterizing transmembrane assembly remains challenging for experiments and simulations. Equilibrium molecular dynamics simulations do not cover the time scales required to sample the typical transmembrane assembly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!