A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionr1cjbjabd9cdqoo9m2ddlotajnppuhud): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

AS-NeSt: A Novel 3D Deep Learning Model for Radiation Therapy Dose Distribution Prediction in Esophageal Cancer Treatment With Multiple Prescriptions. | LitMetric

AI Article Synopsis

  • * Trained on data from 530 patients, the model demonstrated a prediction error of less than 5% and outperformed existing models in terms of accuracy and efficiency, with a relative prediction error averaging at 2.02%.
  • * Clinically, AS-NeSt increased physicians' accuracy in selecting treatment methods to 100%, significantly reduced planning times for dosimetrists, and minimized discrepancies in dose calculations.

Article Abstract

Purpose: Implementing artificial intelligence technologies allows for the accurate prediction of radiation therapy dose distributions, enhancing treatment planning efficiency. However, esophageal cancers present unique challenges because of tumor complexity and diverse prescription types. Additionally, limited data availability hampers the effectiveness of existing artificial intelligence models. This study developed a deep learning model, trained on a diverse data set of esophageal cancer prescriptions, to improve dose prediction accuracy.

Methods And Materials: We retrospectively collected data from 530 patients with esophageal cancer, including single-target and simultaneous integrated boost prescriptions, for model building. The proposed Asymmetric ResNeSt (AS-NeSt) model features novel 3-dimensional (3D) ResNeSt blocks and an asymmetrical architecture. We constructed a loss function targeting global and local doses and validated the model's performance against existing alternatives. Model-assisted experiments were used to validate its clinical benefits.

Results: The AS-NeSt model maintained an absolute prediction error below 5% for each dosimetric metric. The average Dice similarity coefficient for isodose volumes was 0.93. The model achieved an average relative prediction error of 2.02%, statistically lower than Hierarchically Densely Connected U-net (4.17%), DoseNet (2.35%), and Densely Connected Network (3.65%). It also demonstrated significantly fewer parameters and shorter prediction times. Clinically, the AS-NeSt model raised physicians' ability to accurately preassess appropriate treatment methods before planning from 95.24% to 100%, reduced planning time by over 61% for junior dosimetrists and 52% for senior dosimetrists, and decreased both inter- and intra-dosimetrist discrepancies by more than 50%.

Conclusions: The AS-NeSt model, developed with innovative 3D ResNeSt blocks and an asymmetrical encoder-decoder structure, has been validated using clinical esophageal cancer patient data. It accurately predicts 3D dose distributions for various prescriptions, including simultaneous integrated boost, showing potential to improve the management of esophageal cancer treatment in a clinical setting.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2023.12.001DOI Listing

Publication Analysis

Top Keywords

esophageal cancer
20
as-nest model
16
deep learning
8
model
8
learning model
8
radiation therapy
8
therapy dose
8
cancer treatment
8
artificial intelligence
8
dose distributions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!