Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessionr1cjbjabd9cdqoo9m2ddlotajnppuhud): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Implementing artificial intelligence technologies allows for the accurate prediction of radiation therapy dose distributions, enhancing treatment planning efficiency. However, esophageal cancers present unique challenges because of tumor complexity and diverse prescription types. Additionally, limited data availability hampers the effectiveness of existing artificial intelligence models. This study developed a deep learning model, trained on a diverse data set of esophageal cancer prescriptions, to improve dose prediction accuracy.
Methods And Materials: We retrospectively collected data from 530 patients with esophageal cancer, including single-target and simultaneous integrated boost prescriptions, for model building. The proposed Asymmetric ResNeSt (AS-NeSt) model features novel 3-dimensional (3D) ResNeSt blocks and an asymmetrical architecture. We constructed a loss function targeting global and local doses and validated the model's performance against existing alternatives. Model-assisted experiments were used to validate its clinical benefits.
Results: The AS-NeSt model maintained an absolute prediction error below 5% for each dosimetric metric. The average Dice similarity coefficient for isodose volumes was 0.93. The model achieved an average relative prediction error of 2.02%, statistically lower than Hierarchically Densely Connected U-net (4.17%), DoseNet (2.35%), and Densely Connected Network (3.65%). It also demonstrated significantly fewer parameters and shorter prediction times. Clinically, the AS-NeSt model raised physicians' ability to accurately preassess appropriate treatment methods before planning from 95.24% to 100%, reduced planning time by over 61% for junior dosimetrists and 52% for senior dosimetrists, and decreased both inter- and intra-dosimetrist discrepancies by more than 50%.
Conclusions: The AS-NeSt model, developed with innovative 3D ResNeSt blocks and an asymmetrical encoder-decoder structure, has been validated using clinical esophageal cancer patient data. It accurately predicts 3D dose distributions for various prescriptions, including simultaneous integrated boost, showing potential to improve the management of esophageal cancer treatment in a clinical setting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijrobp.2023.12.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!