It is now widely recognized that the sampling rate of Polar Organic Chemical Integrative Samplers (POCIS) is significantly affected by flow velocity, which can cause a consequent bias when determining time-weighted average concentrations (TWAC). We already observed the desorption of deisopropylatrazine (DIA) over time when added to the receiving phase of a POCIS. This desorption rate was particularly influenced by flow velocity, in an agitated water environment in situ. In the method presented here, we calibrated 30 pesticides under controlled laboratory conditions, varying the flow velocity over four levels. We simultaneously studied the desorption rate of DIA-d5 (a deuterated form of DIA) over time. An empirical model based on a power law involving flow velocity was used to process the information from the accumulation kinetics of the compounds of interest and elimination of DIA-d5. This type of model makes it possible to consider the effect of this crucial factor on exchange kinetics, and then to obtain more accurate TWACs with reduced bias and more acceptable dispersion of results.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.141062DOI Listing

Publication Analysis

Top Keywords

flow velocity
20
empirical model
8
time-weighted average
8
polar organic
8
organic chemical
8
chemical integrative
8
integrative samplers
8
dia time
8
desorption rate
8
flow
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!