Nanotechnology offers the potential to provide innovative solutions for sustainable crop production as plants are exposed to a combination of climate change factors (CO, temperature, UV radiation, ozone), abiotic (heavy metals, salinity, drought), and biotic (virus, bacteria, fungi, nematode, and insects) stresses. The application of particular sizes, shapes, and concentration of nanomaterials (NMs) potentially mitigate the negative impacts in plants by modulation of photosynthetic rate, redox homeostasis, hormonal balance, and nutrient assimilation through upregulation of anti-stress metabolites, antioxidant defense pathways, and genes and genes network. The present review inculcates recent advances in uptake, translocation, and accumulation mechanisms of NMs in plants. The critical theme of this review provides detailed insights into different physiological, biochemical, molecular, and stress tolerance mechanism(s) of NMs action and their cross-talk with different phytohormones. The role of NMs as a double-edged sword for climate change factors, abiotic, and biotic stresses for nutrients uptake, hormones synthesis, cytotoxic, and genotoxic effects including chromosomal aberration, and micronuclei synthesis have been extensively studied. Importantly, this review aims to provide an in-depth understanding of the hormesis effect at low and toxicity at higher doses of NMs under different stressors to develop innovative approaches and design smart NMs for sustainable crop production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2023.111964DOI Listing

Publication Analysis

Top Keywords

sustainable crop
8
crop production
8
climate change
8
change factors
8
mechanisms nms
8
nms
6
review
4
review interactions
4
interactions nanomaterials
4
nanomaterials phytohormones
4

Similar Publications

Precipitation recycling, where evapotranspiration (ET) from the land surface contributes to precipitation within the same region, is a critical component of the water cycle. This process is especially important for the US Corn Belt, where extensive cropland expansions and irrigation activities have significantly transformed the landscape and affected the regional climate. Previous studies investigating precipitation recycling typically relied on analytical models with simplifying assumptions, overlooking the complex interactions between groundwater hydrology and agricultural management.

View Article and Find Full Text PDF

Zebularine-treated wheat uncovered a phenotype with characteristics of an epigenetically regulated trait, but major chromosomal aberrations, not DNA methylation changes, are the cause, making zebularine unsuitable for epigenetic breeding. Breeding to identify disease-resistant and climate-tolerant high-yielding wheats has led to yield increases over many years, but new hardy, higher yielding varieties are still needed to improve food security in the face of climate change. Traditional breeding to develop new cultivars of wheat is a lengthy process taking more than seven years from the initial cross to cultivar release.

View Article and Find Full Text PDF

Modelling mixed crop-livestock systems and climate impact assessment in sub-Saharan Africa.

Sci Rep

January 2025

Institute of Crop Science and Resource Conservation, University of Bonn, Katzenburgweg 5, D-53115, Bonn, Germany.

Climate change significantly challenges smallholder mixed crop-livestock (MCL) systems in sub-Saharan Africa (SSA), affecting food and feed production. This study enhances the SIMPLACE modeling framework by incorporating crop-vegetation-livestock models, which contribute to the development of sustainable agricultural practices in response to climate change. Applying such a framework in a domain in West Africa (786,500 km) allowed us to estimate the changes in crop (Maize, Millet, and Sorghum) yield, grass biomass, livestock numbers, and greenhouse gas emission in response to future climate scenarios.

View Article and Find Full Text PDF

Pseudomonas in the spotlight: emerging roles in the nodule microbiome.

Trends Plant Sci

January 2025

Genetics, Faculty of Biology, Ludwig Maximilian University of Munich, 82152 Planegg-Martinsried, Munich, Germany; Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland. Electronic address:

While rhizobia have long been recognised as the primary colonisers of legume nodules, microbiome studies have revealed the presence of other bacteria in these organs. This opinion delves into the factors shaping the nodule microbiome and explores the potential roles of non-rhizobial endophytes, focusing particularly on Pseudomonas as prominent players. We explore the mechanisms by which Pseudomonas colonise nodules, their interactions with rhizobia, and their remarkable potential to promote plant growth and protect against pathogens.

View Article and Find Full Text PDF

How to Identify Pesticide Targets?

J Agric Food Chem

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China.

Pesticides are essential in contemporary agriculture, as they improve crop yields and quality while safeguarding against pests. However, long-term heavy use of traditional pesticides has led to increased pest resistance, while these pesticides are often toxic and less selective, and may also have adverse effects on the environment and nontarget organisms. To solve this problem, it is important to find new targets for pesticide to develop more effective and environmentally friendly alternatives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!