miR-148a and miR-551b-5p regulate inflammatory responses via regulating autophagy in acute pancreatitis.

Int Immunopharmacol

Department of Emergency, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China.

Published: January 2024

Acute pancreatitis (AP) is a common inflammatory response that occurs in the pancreas with mortality rates as high as 30 %. However, there is still no consistent and effective treatment for AP now. MicroRNA-148 was reported to be involved in AP through IL-6 signaling pathway. Therefore, we aimed to further explore the detailed mechanisms of AP, to develop more therapeutic approach for AP. Exosomes were isolated from peripheral blood mononuclear cells of 20 AP patients and 20 healthy volunteers to evaluate the abnormally expressed miRNA. Then pancreatic acinar cells (PACs) were transfected with retrovirus to overexpress miR-148a/miR-551b-5p to evaluate their function. Both miR-148a and miR-551b-5p were highly expressed in AP patients than these in healthy cases. Then overexpressing miR-551b-5p in PACs could regulate autophagy through directly binding to Baculoviral IAP Repeat Containing 6, leading to the increased secretions of interleukin-1β (IL-1β) and interleukin-18 (IL-18) through interleukin-1 (IL-1) signaling pathway. Moreover, overexpressing miR-148a in PACs could decrease the secretions of IL-1β and IL-18 to modulate autophagy. The exosomal miRNA-148a and miRNA-551b-5p derived from peripheral blood mononuclear cells of AP patients may two-way mediate autophagy damage through IL-6/STAT3 signaling pathway, which participated in the AP pathogenesis. Our findings may provide new targets for the diagnosis and treatment of AP.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2023.111438DOI Listing

Publication Analysis

Top Keywords

signaling pathway
12
mir-148a mir-551b-5p
8
acute pancreatitis
8
peripheral blood
8
blood mononuclear
8
mononuclear cells
8
cells patients
8
patients healthy
8
mir-551b-5p regulate
4
regulate inflammatory
4

Similar Publications

Background: Artificial sweeteners (AS) have been widely utilized in the food, beverage, and pharmaceutical industries for decades. While numerous publications have suggested a potential link between AS and diseases, particularly cancer, controversy still surrounds this issue. This study aims to investigate the association between AS consumption and cancer risk.

View Article and Find Full Text PDF

Background: Staphylococcus aureus, a known contributor to non-healing wounds, releases vesicles (SAVs) that influence the delicate balance of host-pathogen interactions. Efferocytosis, a process by which macrophages clear apoptotic cells, plays a key role in successful wound healing. However, the precise impact of SAVs on wound repair and efferocytosis remains unknown.

View Article and Find Full Text PDF

Background: Space-induced plant mutagenesis, driven by cosmic radiation, offers a promising approach for the selective breeding of new plant varieties. By leveraging the unique environment of outer space, we successfully induced mutagenesis in 'Deqin' alfalfa and obtained a fast-growing mutant. However, the molecular mechanisms underlying its rapid growth remain poorly unexplored.

View Article and Find Full Text PDF

Background: Mitochondrial dysfunction and neuronal damage are major sign of cytopathology in Huntington's disease (HD), a neurodegenerative disease. Ubiquitin specific peptidase 11 (USP11) is a deubiquitinating enzyme involved in various physiological processes through regulating protein degradation. However, its specific role in HD is unclear.

View Article and Find Full Text PDF

Background: Drought stress is a significant global challenge that negatively impacts cotton fiber yield and quality. Although many drought-stress responsive genes have been identified in cotton species (Gossypium spp.), the diversity of drought response mechanisms across cotton species remains largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!