Disinfection is vital in ensuring water safety. However, the traditional chlorine disinfection process is prone to producing toxic and harmful disinfection by-products (DBPs). The combination of quaternary ammonium polymer and the chlorine disinfection process can solve this shortcoming. Currently, research on the control of DBPs through the combined process is not systematic and the control effect between reducing the dosage of disinfectants and DBPs remains to be studied. Quaternized cyclodextrin polymers have attracted increasing attention due to their excellent adsorption and antibacterial properties, but their synergistic effect with chlorine disinfection is still unclear. In this study, a magnetic quaternized cyclodextrin polymer (MQCDP) is synthesized in an ionic liquid green system, and a combined process of MQCDP treatment and chlorine disinfection is established. The disinfection performance of the combined process on the actual water body along with its reducing effect on the amount of chlorine disinfectant as well as the trihalomethanes (THMs) and haloacetic acids (HAAs) DBPs are explored. MQCDP has a porous structure with a specific surface area of 825 m g and is easily magnetically separated. MQCDP can remove most of the natural organic matter (UV absorbance decreased by 97 %) in the water at the dosage of 1 g L and kill bacteria with a sterilization rate of 85 %. Compared with disinfection using chlorine alone, the combined process has higher disinfection efficiency and significantly reduces the amount of disinfectant used. A concentration of 5 mg/L of NaClO was needed to meet the standard by chlorine disinfectant alone, while only 2 mg/L of NaClO can meet the standard for the combined process, indicating 60 % of the chlorine demand was reduced. More importantly, the combined process can significantly reduce the generation potential of DBPs. When 10 mg/L of NaClO is added, the THMs and HAAs generated by the combined process decreased by 65 % and 34 %, respectively, compared with the levels produced by single chlorine disinfection. The combined process can reduce the dosage of chlorine disinfectant and MQCDP can adsorb humic acid DBP precursors in raw water, thus lowering the generation of DBPs during disinfection. In summary, MQCDP has excellent separation and antibacterial ability, and its synergistic effects combined with the chlorine disinfection process are of great significance for controlling the amount of disinfectant and the formation potential of DBPs, which has potential applications in actual water treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2023.121078 | DOI Listing |
Sci Rep
January 2025
School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang, 471003, China.
The application of high-pressure grinding rolls (HPGR) for ore crushing is considered to be one of the effective ways to save energy and reduce emissions in the ore processing industry. The crushing effect is directly determined by the forces of ore material during roll crushing. However, the mechanical state of ore material in roll crushing and the effect of roll structure, process parameters, feed particle size, on the force during the crushing of ore material needs to be expanded.
View Article and Find Full Text PDFSci Rep
January 2025
State Key Laboratory of Geohazard Prevention and GeoEnvironment Protection, Chengdu University of Technology, Chengdu, 610059, Sichuan, China.
Pakistan's geographic location makes it an important land hub between Central Asia, Middle East-North Africa, and China. However, the railways, roads, farmland, riverways, and residential quarters in the Piedmont plains of Baluchistan province in northwestern Pakistan are under serious threat of flooding in the summer of 2022. The urgency and severity of climate change's impact on humanity are underscored by the significant threats posed to human life and property in Piedmont Plains environments through extreme flood events, which has garnered widespread concerns.
View Article and Find Full Text PDFSci Rep
January 2025
Shandong Yankuang Intelligent Manufacturing Co., Jining, 272000, China.
The hydraulic column is a core component in the coal mine support system, however, the real-time monitoring of the hydraulic column during the service process of the hydraulic support faces challenges. To address these issues, a high-precision stress mapping method of hydraulic column is proposed. The hydraulic column loss function was constructed to guide the data-driven model training, and the cylinder stress mechanism model was established by using the elastic-plastic theory of thick-walled cylinder.
View Article and Find Full Text PDFSci Rep
January 2025
Research Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain.
Cervical cancer remains a major global health concern, with a specially alarming incidence in younger women. Traditional detection techniques such as the Pap smear and colposcopy often lack sensitivity and specificity and are highly dependent on the experience of the gynaecologist. In response, this study proposes the use of Hyperspectral Imaging, a pioneering technology that combines traditional imaging with spectroscopy to provide detailed spatial and spectral information.
View Article and Find Full Text PDFSci Rep
January 2025
Westchase Software, Houston, TX, 77063, USA.
It is well known that the sedimentary rock record is both incomplete and biased by spatially highly variable rates of sedimentation. Without absolute age constraints of sufficient resolution, the temporal correlation of spatially disjunct records is therefore problematic and uncertain, but these effects have rarely been analysed quantitatively using signal processing methods. Here we use a computational process model to illustrate and analyse how spatial and temporal geochemical records can be biased by the inherent, heterogenous processes of marine sedimentation and preservation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!