A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Target identification, and optimization of dioxygenated amide derivatives as potent antibacterial agents with FabH inhibitory activity. | LitMetric

The enzyme FabH plays a critical role in the initial step of fatty acid biosynthesis, which is vital for the survival of bacteria. As a result, FabH has emerged as an appealing target for the development of novel antibacterial agents. In this study, employing the chemical proteomics method, we validated the previously identified skeleton amide derivatives bearing dioxygenated rings, potentially formed through metabolic processes. Building upon the proteomics findings, we then synthesized and evaluated 32 compounds containing N-heterocyclic amides for their antimicrobial activity for future optimizing the deoxygenated amides. Several compounds demonstrated potent antimicrobial properties with low toxicity, particularly compound 25, which exhibited remarkable potential as an agent with an MIC range of 1.25-3.13 μg/mL against the tested bacterial strains and an IC of 2.0 μM against E. coli-derived FabH. Furthermore, we evaluated nine analogues with relatively low MIC values through cytotoxicity and hemolytic activity assessments, Lipinski's rule-of-five criteria, and in silico ADMET predictions to ascertain their druggability potential. Notably, a detailed docking simulation was performed to investigate the binding interactions of compound 25 within the binding pocket of E. coli FabH, which encouragingly revealed strong binding interactions. Based on our findings, compound 25 emerges as the optimal candidate for in vivo therapy aimed at treating infected skin defects. Remarkably, the application of compound 25 demonstrated a significant reduction in the duration of wound infection and notably accelerated the healing process of infected wounds, achieving an impressive 94 % healing rate by day 10.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2023.116064DOI Listing

Publication Analysis

Top Keywords

amide derivatives
8
antibacterial agents
8
binding interactions
8
fabh
5
target identification
4
identification optimization
4
optimization dioxygenated
4
dioxygenated amide
4
derivatives potent
4
potent antibacterial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!