A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Assessment of vertical cooling performance of trees over different surface covers. | LitMetric

Assessment of vertical cooling performance of trees over different surface covers.

J Therm Biol

Centre for Climate-Resilient and Low-Carbon Cities, School of Architecture and Urban Planning, Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University, Chongqing, 400045, China; Institute for Smart City of Chongqing University in Liyang, Chongqing University, Liyang, 213300, Jiangsu, China; CMA Key Open Laboratory of Transforming Climate Resources to Economy, Chongqing, 401147, China. Electronic address:

Published: January 2024

Tree-induced cooling benefits are associated with various factors, such as canopy morphology, surface cover, and environmental configuration. However, limited studies have analyzed the sensitivity of tree-induced cooling effects to the combination of such factors. Most studies have focused on 1.5-m cooling performance, and few studies on the variability of the under-tree vertical cooling performance. Therefore, this study aims to investigate the vertical cooling performance of different combinations of trees and surface covers. The study was completed in Chongqing, China, with field experiments capturing vertical air temperature and wind speed at 0.5, 1.0, 1.5, 2.0 and 2.5 m under two typical combinations of "tree + grass" (ComA) and "tree + shrubs" (ComB), and capturing 1.5 m microclimatic environments of a control group with hard pavement without tree shade (REF). The results show that at an average ambient temperature of 33 °C, the maximum air-cooling temperatures for ComA and ComB were 2.46 °C and 1.78 °C, respectively. An increase in the ambient temperature corresponded to a decrease in the cooling effect difference between ComA and ComB. ComA had a maximum vertical temperature difference of 1.01 °C between H and H. Between H and H, the maximum vertical temperature difference for ComB was 1.64 °C. This study explored the changing patterns of under-tree vertical temperatures under different tree and surface cover combinations, conducive to clarifying the key elements affecting tree cooling performance. The results have implications for accurate thermal comfort assessments and provide a theoretical basis for fine-tuning the design of under-tree spaces.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtherbio.2023.103779DOI Listing

Publication Analysis

Top Keywords

cooling performance
20
vertical cooling
12
cooling
8
trees surface
8
surface covers
8
tree-induced cooling
8
surface cover
8
under-tree vertical
8
ambient temperature
8
coma comb
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!