Hydrolytic nanozymes: Preparation, properties, and applications.

Adv Colloid Interface Sci

Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China. Electronic address:

Published: January 2024

Hydrolytic nanozymes, as promising alternatives to hydrolytic enzymes, can efficiently catalyze the hydrolysis reactions and overcome the operating window limitations of natural enzymes. Moreover, they exhibit several merits such as relatively low cost, easier recovery and reuse, improved operating stability, and adjustable catalytic properties. Consequently, they have found relevance in practical applications such as organic synthesis, chemical weapon degradation, and biosensing. In this review, we highlight recent works addressing the broad topic of the development of hydrolytic nanozymes. We review the preparation, properties, and applications of six types of hydrolytic nanozymes, including AuNP-based nanozymes, polymeric nanozymes, surfactant assemblies, peptide assemblies, metal and metal oxide nanoparticles, and MOFs. Last, we discuss the remaining challenges and future directions. This review will stimulate the development and application of hydrolytic nanozymes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cis.2023.103072DOI Listing

Publication Analysis

Top Keywords

hydrolytic nanozymes
20
preparation properties
8
properties applications
8
hydrolytic
6
nanozymes
6
nanozymes preparation
4
applications hydrolytic
4
nanozymes promising
4
promising alternatives
4
alternatives hydrolytic
4

Similar Publications

Carbocation charge as an interpretable descriptor for the catalytic activity of hydrolytic nanozymes.

J Colloid Interface Sci

December 2024

College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China. Electronic address:

A universal theory for predicting the catalytic activity of hydrolytic nanozymes has yet to be developed. Herein, by investigating the polarization and hydrolysis mechanisms of nanomaterials towards amide bonds, carbocation charge was identified as a key electronic descriptor for predicting catalytic activity in amide hydrolysis. Through machine learning correlation analysis and the Sure Independence Screening and Sparsifying Operator (SISSO) algorithm, this descriptor was interpreted to associate with the d-band center and Lewis acidity on the nanomaterial surface.

View Article and Find Full Text PDF

Papain functionalized Prussian blue nanozyme colloids of triple enzymatic function.

Chem Commun (Camb)

November 2024

MTA-SZTE Momentum Biocolloids Research Group, Department of Physical Chemistry and Materials Science, Interdisciplinary Centre of Excellence, University of Szeged, 1 Rerrich Bela ter, 6720 Szeged, Hungary.

Prussian blue nanozymes were surface engineered with papain enzyme to develop processable nanoparticle dispersions with antioxidant and hydrolytic activities for biocatalytic applications. Enzyme coating improved the colloidal stability of the nanozymes and the obtained papain-Prussian blue hybrid showed remarkable peroxidase ( = 8.82 × 10 M s, = 12.

View Article and Find Full Text PDF

Redox interference-free bimodal paraoxon sensing enabled by an aggregation-induced emission nanozyme catalytically hydrolyzing phosphoesters specifically.

Biosens Bioelectron

January 2025

School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China; School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China; School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, PR China; School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA. Electronic address:

Article Synopsis
  • Rapid and accurate sensors for detecting organophosphorus pesticide residues are urgently needed due to contamination concerns.
  • Researchers developed a Zr-based metal-organic framework (MOF) that minimizes interference from external substances and enhances detection performance through a unique redox-free bimodal approach.
  • The sensor uses a dual-mode colorimetric and fluorescence method for detecting paraoxon, allowing quick and easy testing via a portable smartphone platform without interference from other redox substances.
View Article and Find Full Text PDF

Biomimetic engineering of a neuroinflammation-targeted MOF nanozyme scaffolded with photo-trigger released CO for the treatment of Alzheimer's disease.

Chem Sci

August 2024

Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China

Alzheimer's disease (AD) is one of the most fatal and irreversible neurodegenerative diseases, which causes a huge emotional and financial burden on families and society. Despite the progress made with recent clinical use of inhibitors of acetylcholinesterase and amyloid-β (Aβ) antibodies, the curative effects of AD treatment remain unsatisfactory, which is probably due to the complexity of pathogenesis and the multiplicity of therapeutic targets. Thus, modulating complex pathological networks could be an alternative approach to treat AD.

View Article and Find Full Text PDF

Development of a Zn-Based Single-Atom Nanozyme for Efficient Hydrolysis of Glycosidic Bonds.

Small

November 2024

Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, P. R. China.

Hydrolytic enzymes are essential components in second-generation biofuel technology and food fermentation processes. Nanozymes show promise for large-scale industrial applications as replacements for natural enzymes due to their distinct advantages. However, there remains a research gap concerning glycosidase nanozymes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!