Liquid storage of turkey semen without the loss of fertilizing ability is of practical interest to the poultry industry. However, fertility rates from liquid-stored turkey semen decline within a few hours. A clear cause of the decline in spermatozoa quality remains unidentified. Therefore, the purpose of the present study was to monitor the dynamics of proteomic changes in spermatozoa during 48 h of liquid storage by 2-dimensional difference in-gel electrophoresis coupled with matrix-assisted laser desorption/ionization mass spectrometry. A total of 57 protein spots were differentially expressed between fresh and stored spermatozoa; 42 spots were more and 15 were less abundant after 48 h of semen storage. Raw proteomic data are available via ProteomeXchange with identifier PXD043050. The selected differentially expressed proteins (DEPs) were validated by western blotting and localized in specific spermatozoa structures by immunofluorescence, such as the head (acrosin and tubulin α), midpiece (acrosin, aconitate hydratase 2, and glycerol-3-phosphate dehydrogenase) and tail (tubulin α). Most of the DEPs that changed in response to liquid storage were related to flagellum-dependent cell motility, energy derivation through oxidation of organic compounds and induction of fertilization, suggesting the complexity of the processes leading to the decrease in stored semen quality. The damaging effect of liquid storage on spermatozoa flagellum manifested as more microtubule proteins, such as tubulins and tektins, most likely formed by posttranslational modifications, tubulin α relocation from the tail to the sperm head, which appeared after 48 h of semen storage, and decreases in fibrous shelf proteins at the same time. Motility could be affected by dysregulation of Ca-binding proteins and disturbances in energy metabolism in spermatozoa flagellum. Regarding sperm mitochondria, DEPs involved in energy derivation through the oxidation of organic compounds indicated disturbances in fatty acid beta oxidation and the tricarboxylic acid cycle as possible reasons for energy deficiency during liquid storage. Disturbances in acrosin and 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase zeta may be involved in rapid declines in the fertility potential of stored turkey spermatozoa. These results showed the complexity of the processes leading to a decrease in stored semen quality and broadened knowledge of the detrimental effects of liquid storage on turkey spermatozoa physiology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.theriogenology.2023.12.026DOI Listing

Publication Analysis

Top Keywords

liquid storage
24
spermatozoa
9
storage
8
storage turkey
8
turkey semen
8
differentially expressed
8
48 h semen
8
semen storage
8
energy derivation
8
derivation oxidation
8

Similar Publications

Evaluation of Lipid Changes During the Drying Process of by Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS)-Based Lipidomics Technique.

J Fungi (Basel)

December 2024

State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China.

Comprehensive analysis of the lipid content in samples is essential for optimizing their effective use. Understanding the lipid profile can significantly enhance the application of this valuable fungus across various fields, including nutrition and medicine. However, to date, there is limited knowledge regarding the effects of different drying methods on the quality of lipids present in .

View Article and Find Full Text PDF

Flexible solid-state-based supercapacitors are in demand for the soft components used in electronics. The increased attention paid toward solid-state electrolytes could be due to their advantages, including no leakage, special separators, and improved safety. Gel polymer electrolytes (GPEs) are preferred in the energy storage field, likely owing to their safety, lack of leakage, and compatibility with various separators as well as their higher ionic conductivity (IC) than traditional solid electrolytes.

View Article and Find Full Text PDF

During a closed connected single-use monoclonal antibody (mAb) purification process, samples for leachables screening were gathered from two parallel processes (using different capturing chromatography), from perfusion culture to final storage bags. These samples were prepared and analyzed using screening methods for HS-GC-MS, GC-MS, LC-QToF/ESI pos and neg, to be able to identify a broad spectrum of leachables. The identified compounds were sorted into sample points from different steps of the mAb process, compared with available extractables data mapped from the process equipment used.

View Article and Find Full Text PDF

Determination of new biomarkers for diagnosis of pyridoxine dependent epilepsy in human plasma and urine by liquid chromatography-mass spectrometry.

Clin Chim Acta

December 2024

Newborn Screening, Clinical Biochemistry and Clinical Pharmacy Laboratory, Meyer Children's Hospital IRCCS, 50139 Florence, Italy; Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139 Florence, Italy. Electronic address:

Article Synopsis
  • Pyridoxine-dependent epilepsy (PDE) is a rare genetic disorder linked to abnormal lysine metabolism, with current diagnostics relying on unreliable biomarkers that are unstable and technically challenging to analyze.
  • A new method was developed using LC-MS/MS to quantify two alternative biomarkers (2-OPP and 6-oxoPIP) from urine and plasma samples, which showed excellent stability and linearity in testing.
  • This validated method offers a promising routine diagnostic tool for identifying and monitoring PDE in patients, potentially improving clinical outcomes.
View Article and Find Full Text PDF

Deep eutectic solvents (DESs) are an emerging class of ionic liquids with high tunability and promise for battery applications. In this study, we investigated acetamide-based DESs for Zn batteries, focusing on a synergistic mixture of two known acetamide (Ace)-based DESs: Ace4ZnCl2 and Ace4ZnTFSI2. By combining these two DESs in various ratios, we aimed to enhance ionic conductivity and optimize electrochemical performance while addressing corrosion concerns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!