Dry-heat-induced phosphoserine-specific fragmentation of ovalbumin.

Food Chem

Kewpie Research Division for Egg Innovation, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan; Faculty of Applied Biosciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan. Electronic address:

Published: May 2024

When subjected to dry-heating, egg white ovalbumin, a phosphoglycoprotein, undergoes fragmentation and forms soluble aggregates. We investigated the mechanisms of dry-heat-induced fragmentation of ovalbumin. SDS-PAGE analysis showed that ovalbumin fragmented into five polypeptides, and their amount increased over 6 h of dry-heat treatment at 120 °C. The fragments contained fewer or no phosphoserine, compared with that in crude ovalbumin. Liquid chromatography-tandem mass spectrometry analysis of tryptic digests revealed that the fragmentation sites were located on phosphoserine residues, S and S. During fragmentation, the phosphoserine residues underwent conversion into dehydroalanine residues, which were subsequently hydrolyzed. The nitrogen from the dehydroalanine became a newly formed terminal amide group on the N-terminal fragment, while the remaining molecule predominantly formed a new terminal pyruvoyl group. Furthermore, the fragments were incorporated into monomers or soluble aggregates of ovalbumin via covalent and non-covalent bonds. This study demonstrated a novel mechanism for dry-heat-induced fragmentation of phosphoproteins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2023.138263DOI Listing

Publication Analysis

Top Keywords

fragmentation ovalbumin
8
soluble aggregates
8
dry-heat-induced fragmentation
8
phosphoserine residues
8
formed terminal
8
fragmentation
6
ovalbumin
6
dry-heat-induced phosphoserine-specific
4
phosphoserine-specific fragmentation
4
ovalbumin subjected
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!