Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sweet proteins offer a promising solution as sugar substitutes by providing a sugar-like sweetness without the negative health impacts linked to sugar or artificial sweeteners. However, the low thermal stability of sweet proteins has hindered their applications. In this study, we took a computational approach utilizing ΔΔG calculations in PyRosetta to enhance the thermostability of single-chain monellin (MNEI). By generating and characterizing 21 variants with single mutation, we identified 11 variants with higher melting temperature (T) than that of MNEI. To further enhance the thermal stability, we conducted structural analysis and designed an additional set of 14 variants with multiple mutations. Among these variants, four exhibited a significant improvement in thermal stability, with an increase of at least 20 °C (T > 96 °C) compared to MNEI, while maintaining their sweetness. Remarkably, these variants remained soluble even after being heated in boiling water for one hour. Moreover, they displayed exceptional stability across alkaline, acidic and neutral environments. These findings highlight the tremendous potential of these variants for applications in the food and beverage industry. Additionally, this study provides valuable strategies for protein engineering to enhance the thermal stability of sweet proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2023.138279 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!