AI Article Synopsis

  • RNA plays a crucial role in the life cycle of viruses, serving both as messenger RNA and as their genetic material.
  • The interactions between viral RNA and host cells are significant, but the full range of these interactions is not well understood.
  • The chapter highlights the role of cellular RNA-binding proteins in viral infections and explores new methods for identifying and studying these interactions.

Article Abstract

RNA is a central molecule in the life cycle of viruses, acting not only as messenger (m)RNA but also as a genome. Given these critical roles, it is not surprising that viral RNA is a hub for host-virus interactions. However, the interactome of viral RNAs remains largely unknown. This chapter discusses the importance of cellular RNA-binding proteins in virus infection and the emergent approaches developed to uncover and characterise them.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-031-40086-5_13DOI Listing

Publication Analysis

Top Keywords

viral rna
8
rna hub
8
host-virus interactions
8
hub critical
4
critical host-virus
4
interactions rna
4
rna central
4
central molecule
4
molecule life
4
life cycle
4

Similar Publications

Small interfering RNAs generated from the terminal panhandle structure of negative-strand RNA virus promote viral infection.

PLoS Pathog

January 2025

State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

Virus-derived small interfering RNAs (vsiRNAs) have been widely recognized to play an antiviral immunity role. However, it is unclear whether vsiRNAs can also play a positive role in viral infection. Here, we characterized three highly abundant vsiRNAs mapped to the genomic termini of rice stripe virus (RSV), a negative-strand RNA virus transmitted by insect vectors.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Amsterdam UMC, Amsterdam, Netherlands.

Background: The TMEM106B protein is critical for proper functioning of the endolysomal system, which is utilised by all cells to traffic and degrade molecular cargo. Genome-wide association studies identified a haplotype in the TMEM106B gene that is associated with increased risk for Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and frontotemporal lobar degeneration with TAR DNA binding protein inclusions (FTLD-TDP). However, the causal variant that drives the association has thus far remained elusive.

View Article and Find Full Text PDF

Background: The increased vulnerability of Alzheimer's disease patients to severe SARS-CoV-2 infection raises crucial concerns, especially with the potential transition of the COVID-19 pandemic to an endemic state. Given the rising prevalence of Alzheimer's in an aging world-wide population, elucidating whether SARS-CoV-2 infection may induce or accelerate neurodegeneration becomes imperative.

Method: To investigate the neurodegenerative effects of SARS-CoV-2 infection, we generated brain organoids using human induced pluripotent stem lines from one non-demented control, one with sporadic Alzheimer's, and one with familial Alzheimer's.

View Article and Find Full Text PDF

Background: Herpes simplex virus (HSV-1) has been associated with molecular and cellular signatures associated with Alzheimer's disease (AD). We explored the use of both recent single-cell and bulk transcriptomics technologies in dissecting the molecular and cellular virus-human interactions with HSV-1 infected cerebral organoids (2D and 3D). We compared the results with our previous observations from bulk RNA sequencing and discovered novel insights into HSV-1 induced AD-associated molecular pathology that were made possible by each transcriptomics technology.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, USA.

Background: SARS-CoV-2 causes a variety of neurological sequelae in COVID-19 survivors, including fatigue and cognitive dysfunction. Endothelial dysfunction is the unifying and central mechanism of COVID-19 illness and a major risk factor for vascular dementia (VaD). Endothelial dysfunction stems, in part, from an imbalance between nitric oxide (NO) generated by the endothelial nitric oxide synthase (eNOS) and reactive oxidant species produced by uncoupled-eNOS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!