Acellular porcine cornea (APC) has been used in corneal transplantation and treatment of the corneal diseases. Sterilization is a key step before the application of graft, and irradiation is one of the most commonly used methods. In this paper, APC was prepared by the physical freeze-thawing combined with biological enzymes, and the effects of the electron beam (E-beam) and cobalt 60 (Co-γ) at the dose of 15 kGy on the physicochemical properties, structure, immunogenicity, and biocompatibility of the APC were investigated. After decellularization, the residual DNA was 20.86 ± 1.02 ng/mg, and the α-Gal clearance rate was more than 99%. Irradiation, especially the Co-γ, reduced the cornea's transmittance, elastic modulus, enzymatic hydrolysis rate, swelling ratio, and cross-linking degree. Meanwhile, the diameter and spacing of the collagen fibers increased. In the rat subcutaneous implantation, many inflammatory cells appeared in the unirradiated APC, while the irradiated had good histocompatibility, but the degradation was faster. The lamellar keratoplasty in rabbits indicated that compared to the E-beam, the Co-γ damaged the chemical bond of collagen to a larger extent, reduced the content of GAGs, and prolonged the complete epithelization of the grafts. The corneal edema was more serious within 1 month after the surgery. After 2 months, the thickness of the APC with the two irradiation methods tended to be stable, but that in the Co-γ group became thinner. The pathological results showed that the collagen structure was looser and the pores were larger, indicating the Co-γ had a more extensive effect on the APC than the E-beam at 15 kGy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.37663 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!